
Performance Evaluation of Evolutionary Algorithms in
Classification of Biomedical Datasets

Ajay Kumar Tanwani and Muddassar Farooq

Next Generation Intelligent Networks Research Center (nexGIN RC)
National University of Computer & Emerging Sciences (FAST-NUCES)

Islamabad, 44000, Pakistan
{ajay.tanwani, muddassar.farooq}@nexginrc.org

ABSTRACT
Biomedical datasets pose a unique challenge for machine learning
and data mining techniques to extract accurate, comprehensible and
hidden knowledge from them. In this paper, we comprehensively
investigate the role of a biomedical dataset on the classification ac-
curacy of an algorithm. To this end, we quantify the complexity of a
biomedical dataset in terms of its missing values, imbalance ratio,
noise and information gain. We have performed our experiments
using six well-known evolutionary rule learning algorithms: XCS,
UCS, GAssist, cAnt-Miner, SLAVE and Ishibuchi, on 31 publicly
available biomedical datasets. The results of our experiments show
that GAssist gives better classification accuracy among the com-
pared schemes. However, the nature of a biomedical dataset – not
the selection of evolutionary algorithm – plays a major role in de-
termining the classification accuracy of a dataset. We further show
that noise is a dominating factor in determining the complexity of
a dataset and it is inversely proportional to the classification accu-
racy of all the algorithms. The complexity of biomedical dataset
will prove useful to researchers in evaluating the classification po-
tential of their dataset for automatic knowledge extraction.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Complexity Measures,
Performance Measures; I.1.2 [Computing Methodologies]: Algo-
rithms—Analysis of algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Classification, Evolutionary Rule Learning Algorithms, Biomedi-
cal Datasets
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1. INTRODUCTION
Recent advancements in the field of bioinformatics and computa-

tional biology are increasing the complexity of underlying biomed-
ical datasets. The use of sophisticated equipments like mass spec-
trometers and magnetic resonance imaging (MRI) scanners gener-
ate enormous amounts of data that pose a number of issues regard-
ing their electronic storage and efficient processing. One of the
major challenges in this context is to automatically extract accu-
rate, comprehensible, and hidden knowledge from large amounts
of raw data. The discovered knowledge can then help medical ex-
perts in classification of anomalies for these datasets.

The well-known data mining techniques for knowledge extrac-
tion and classification include probabilistic methods, neural net-
works, support vector machines, decision trees, instance based learn-
ers, rough sets and evolutionary algorithms. The evolutionary algo-
rithms – inspired from the evolution process in biological species –
show a number of desirable properties like self-adaptation, robust-
ness, collective learning etc., which make them suitable for chal-
lenging real world problems. The Evolutionary Computation (EC)
paradigm has been successfully used in several data mining tech-
niques including but not limited to genetic based machine learning
systems (GBML), learning classifier systems (LCS), ant colony in-
spired classifiers, and hybrid variants of evolutionary fuzzy systems
and neural networks. The evolutionary classifiers are becoming
popular for data mining of medical datasets because of their ability
to find hidden patterns in electronic records that are not otherwise
obvious even to physicians [1].

However, the choice of a classifier is not obvious to a researcher
working on the classification of biomedical datasets. Consequently,
the common methodology adopted by researchers is to experiment
their dataset with a few well-known machine learning techniques
and select the one that gives better results. As a result, no attempt
is yet made to systematically investigate the factors that define the
accuracy of a classifier. In this paper, we define the complex-
ity of a dataset in terms of missing values, imbalance ratio, noise
and information gain. Moreover, we evaluate the performance of
six well-known evolutionary rule learning classifiers: XCS, UCS,
GAssist, cAnt-Miner, SLAVE and Ishibuchi on 31 publicly avail-
able biomedical datasets. The results of our experiments provide
two valuable insights: (1) classification accuracy strongly depends
on the complexity of a biomedical dataset, (2) noise in a dataset
dominates its complexity. To conclude, we propose that researchers
should first evaluate the complexity of their biomedical dataset us-
ing our proposed parameters in order to gain an insight about its
overall classification potential.

The remaining paper is organized as follows: we introduce the
evolutionary algorithms used in our study in Section 3. In Section



4, we quantify the complexity of the biomedical datasets. We report
the results of our experiments which are followed by discussions in
Section 5. Finally, we conclude the paper with an outlook to our
future work.

2. RELATED WORK
We now present a brief overview of different studies that analyze

the performance of evolutionary algorithms on various biomedical
domains. In [3], Wong et al. applied evolutionary algorithms to
discover knowledge in the form of rules and casual structures from
fracture and scoliosis databases. Their results suggest that evolu-
tionary algorithms are useful in finding interesting patterns. John
Holmes in [4] presented his stimulus response learning classifier
system, EpiCS, to enhance classification accuracy in an imbalanced
class dataset. He, however, used artificially created liver cancer
dataset. Bernado-Mansilla in [5] characterize the complexity of the
classification problem by a set of geometrical descriptors and an-
alyze the competence of XCS in this domain. The authors in [6]
compared XCS with Bayesian network, SMO and C4.5 for min-
ing breast cancer data and showed that XCS provides significantly
higher accuracy along with C4.5. However its rules are considered
more comprehensible and descriptive by the domain medical ex-
perts. The work in [7] evaluates two competitive learning classifier
systems, XCS and UCS, for extracting knowledge from imbalanced
data using both fabricated and real world problems. The results
of their study prove the robustness of these algorithms compared
with IBk, C4.5 and SMO. In [8], the authors compared the Pitts-
burgh and Michigan style classifier using XCS and GAssist on 13
publicly available datasets to reveal important differences between
the two systems. The comparative study performed in [9] between
evolutionary algorithms (XCS and Gale) and non-evolutionary al-
gorithms (instance based, decision trees, rule-learning, statistical
models and support vector machines) on several datasets suggest
evolutionary algorithms as more suitable for data mining and clas-
sification. The results of the experiments carried in [10] show bet-
ter classification accuracy for well-known ant colony inspired Ant
Miner compared with C4.5 on 4 biomedical datasets. The authors
in [11] have analyzed several strategies of evolutionary fuzzy mod-
els for data mining and knowledge discovery.

A common theme observed in various studies is that they are
inclined towards particular classifier(s) instead of the biomedical
dataset(s). In contrast, our study uses a novel methodology to quan-
tify the complexity of a dataset, which we show, governs the accu-
racy of a classifier.

3. EVOLUTIONARY ALGORITHMS
We have selected a diverse set of well-known evolutionary rule

learning algorithms for our empirical study. The selected algo-
rithms are: (1) reinforcement learning based Michigan style XCS
[18], (2) supervised learning based Michigan style UCS [19], (3)
Pittsburgh style GAssist [20], (4) Ant Colony Optimization (ACO)
inspired cAnt-Miner [21], (5) genetic fuzzy iterative learner SLAVE
[22], and (6) genetic fuzzy classifier Ishibuchi [23].

3.1 XCS
XCS is an accuracy based Michigan-style classifier, that evolves

a set of rules as a population of classifiers (P ). Each rule consists
of a condition and an action. Each rule has three main performance
parameters: (1) payoff prediction (p), (2) prediction error (ε), and
(3) fitness (F ). The first step in classification of an instance is
to build a match set (M ) that consists of rules whose conditions
are satisfied. The payoff prediction of each rule is computed and

its corresponding action set (A) is created. The online learning
is made possible with a reward (r), returned by the environment,
that is subsequently used to tune the performance parameters of
the rules in the action set. The updated fitness is inversely pro-
portional to the prediction error. Finally a genetic algorithm GA,
with crossover and mutation probabilities χ and μ respectively, is
applied to the rules in the action set and consequently new rules
are added to the population. Some rules are also deleted from the
population depending on their experience.

The parameter configuration of XCS used in our experiments is
as follows: population size N = 6400, learning rate β = 0.2, θsub =
θdel = 50, tournament size = 0.4, χ = 0.8, μ = 0.04 and the number
of explorations are kept 100, 000.

3.2 UCS
UCS is another accuracy based, Michigan-style classifier which

is in principle quite similar to XCS. However, it uses a supervised
learning scheme to compute fitness instead of reinforcement learn-
ing employed by XCS. UCS like XCS also evolves a population of
rules (P ). Each rule has two parameters: (1) accuracy (acc), and
(2) fitness (F ). During the training phase, for every instance a set
of rules whose conditions are satisfied become part of its match set
(M ). The rules that perform correct classification become part of
the correct set (C), and the others become part of the incorrect set
(!C). Finally, the genetic algorithm GA is applied to the correct set
to update its population. Every instance during testing is classified
through weighted voting, on the basis of fitness, to select the action.

We have used default parameter settings with N = 6400, number
of iterations = 100, 000 and acc0 = 0.99. The other tuning param-
eters of GA are kept same as that in XCS.

3.3 GAssist
GAssist (Genetic Algorithms based claSSIfier sySTem), in con-

trast to XCS and UCS, is a Pittsburgh-style learning classifier in
which the rules are assembled in the form of a decision list. GAssist-
ADI uses Adaptive Discretization Intervals (ADI) rule represen-
tation. In such systems, the continuous space is discretized into
fixed intervals for developing rules. Generalization is introduced
by deleting and selecting rule set as a function of their accuracy
and length. The crossover between two rules takes place across
attribute boundaries rather than attribute intervals.

GAssist parameter setting is as follows: crossover probability =
0.6, number of iterations = 500, minimum number of rules for rule
deletion = 12, and set of uniform discretizers with 4, 5, 6, 7, 8, 10,
15, 20 and 25 bins.

3.4 cAnt-Miner
Ant Miner, inspired by behavior of real ant colonies, uses Ant

Colony Optimization (ACO) to construct classification rules from
the training data. The Rule Discovery process consists of 3 steps
i.e. rule generation, rule pruning and rule updating. In the rule
generation step, an ant starts with an empty rule list and adds one
term at a time based on the probability of that attribute-value pair.
It continues to add terms to the rule without duplication until all the
attributes are exhausted or the new terms make the rule more spe-
cific, defined by a user specified threshold. In the rule pruning step
all the terms are removed one by one from the rule that degrades
the accuracy of that rule. While updating rules, the pheromone val-
ues of terms are increased or decreased on the basis of their usage
in the rule discovery process. cAnt-Miner is a variant of Ant Miner
for real valued attributes. The parameters of cAnt-Miner are set
to: number of ants = 3000, minimum cases per rule = 5, maximum
number of uncovered cases = 10 and convergence test size = 10.



3.5 SLAVE
SLAVE (Structural Learning Algorithm in Vague Environment)

is totally different from the classical Michigan-style and Pittsburgh-
style rule learning algorithms. In this approach, every entity in the
population represents a unique rule. But during an iteration of a
genetic algorithm, only the best individual is added to the final set
of rules which is eventually used for classification. In this way,
SLAVE combines its iterative learning approach with the fuzzy
models. The fitness of the rules is determined by their complete-
ness and consistency.

In our experiments, the parameter configuration of SLAVE is:
number of labels = 5, population size = 100, number of iterations
allowed without change = 500 and mutation probability = 0.01.

3.6 Ishibuchi
Ishibuchi et al. proposed a fuzzy rule learning method for multi-

dimensional pattern classification problemwith continuous attributes.
The classification is done with the help of a fuzzy-rule base in
which each fuzzy if-then rule is handled as an individual, and a
fitness value is assigned to each rule. The criteria for assigning a
class label is based on a simple heuristic procedure which assigns
a grade of certainty for each fuzzy if-then rule. Because it uses lin-
guistic values with fixed membership functions as antecedent fuzzy
sets, a linguistic interpretation of each fuzzy if-then rule is easily
obtained which greatly helps in comprehending the generated solu-
tion.

The experiments are carried with default parameters using num-
ber of labels = 5, population size = 100, number of evaluations =
10, 000, along with crossover and mutation probabilities of 1.0 and
0.9 respectively.

4. NATURE OF BIOMEDICAL DATASETS
Biomedical datasets provide a whole spectrum of difficulties –

high-dimensionality, multiple classes, imbalanced classes, miss-
ing values and noisy data – that affect the classification accuracy
of algorithms. The inconsistencies and inherent complexities in
biomedical datasets obtained from different sources justify the need
to separately investigate the impact of the nature of biomedical
dataset in classification. To this end, we have selected 31 diverse
biomedical datasets publicly available from UCI machine learning
repository [12]. We now introduce four parameters that we use to
quantify the complexity of a biomedical dataset: (1) missing val-
ues, (2) imbalance ratio, (3) noise, and (4) information gain.

4.1 Missing Values
A major focus of the machine learning community has been to

analyze the effect of missing data on the accuracy of a classifier.
The missing data is generally classified into three types: (1) missing
completely at random (MCAR), (2) missing at random (MAR), and
(3) not missing at random (NMAR). The datasets obtained from
clinical databases contain several missing fields which can belong
to all three categories of missing values. In Table 1 we see that VA-
Heart dataset contains upto 27% of missing values in its attributes.

4.2 Imbalance Ratio
Orriols-Puig and Bernado-Mansilla compute class imbalance as

the ratio between the number of majority class instances and the
number of minority class instances [7]. But, this is only suitable for
two-class problems as it does not include proportion of other class
instances for a multi-class dataset. For example, Thyroid0387 has
a total of 32 classes with 6771 majority class instances and only
1 minority class instance. The imbalance ratio, using the above
method, is 6771 which definitely does not represent the true picture

because the distribution of instances of other classes is relatively
uniform. Therefore, we use following definition of imbalance ratio
Ir to cater for proportion of all class distributions:

Ir =
Nc − 1

Nc

Nc�
i=1

Ii

In − Ii
(1)

where Ir is in the range (1≤ Ir <∞) and Ir = 1 is a completely
balanced dataset having equal instances of all classes. Nc is the
number of classes, Ii is the number of instances of class i and In is
the total number of instances. Hyperthyroid is the most imbalanced
dataset in our repository with an imbalance ratio of 28.81.

4.3 Noise
Noise is of two types: (1) attribute noise, and (2) class noise. Re-

search has shown that the impact of class noise on classification ac-
curacy is significantly more as compared to the attribute noise [14]
and hence, we only quantify class noise in our study. The common
sources of class noise are inconsistent and mislabeled instances. A
number of research efforts have been made to quantify the level of
noise in a dataset, but its definition still remains subjective. Brodley
and Friedl characterized noise as the proportion of incorrectly clas-
sified instances by a set of trained classifiers [15]. We use a similar
approach to quantify noise but utilize confusion matrices for a set
of classifiers to determine noisy instances. Noise is then quanti-
fied as the sum of all off-diagonal entities where each entity is the
minimum of all the corresponding elements in a set of confusion
matrices. The defined criteria is based upon two assumptions: (1)
an inconsistent or misclassified instance is likely to confuse every
classifier, and (2) the bias of an algorithm towards particular class
instances can be factored out by using a set of classifiers. The ad-
vantage of our approach is that we separately identify misclassified
instances of every class and only categorize those as noisy which
are misclassified by all the classifiers.

The confusion matrix of a nth classifier in a set of n classifiers
can in general be represented as:

Cn =

�
����

in11 in12 . . . in1j

in21 in22 . . . in2j

. . . . . .

. . . . . .
ini1 ini2 . . . inij

�
����

where the diagonal elements in Cn represent the correctly clas-
sified instances and off-diagonal elements are the incorrectly clas-
sified instances. The percentage of class noise in a dataset of In

instances can be computed as below:

Noise =

�
1

In

Nc�
i=1

Nc�
j=1

min(C1(i, j), C2(i, j)......Cn(i, j))

	
100

(2)
where i �= j and min(C1(i, j), C2(i, j)......Cn(i, j)) is an en-

tity for corresponding i and j that represents minimum number of
class instances misclassified by all the classifiers. We have used
five well-known and diverse machine learning algorithms as a set
of classifiers in our study: Naive Bayes (probabilistic), SMO (sup-
port vector machines), J48 (decision trees), Ripper (inductive rule
learner)and IBk (instance based learner). We use the standard im-
plementations of these schemes inWakaito Environment for Knowl-
edge Acquisition (WEKA) [13]. It is evident from Table 1 that
biomedical datasets are generally associated with high percentage
of noise levels.



4.4 Information Gain
Information gain is an information-theoretic measure that evalu-

ates the quality of attributes in a dataset. It measures the reduction
in uncertainty if the values of an attribute are known. For a given
attribute X and a class attribute Y , the uncertainty is given by their
respective entropies H(X) and H(Y ). Then the information gain
of X with respect to Y is given by I(Y ; X), where

I(Y ; X) = H(Y )−H(Y |X)

The average and total information gain of a biomedical dataset
shown in Table 1 give a measure of the quality of its attributes for
classification.

5. RESULTS AND DISCUSSIONS
We now present the results of our experiments that we have done

to analyze the nature of 31 biomedical datasets with six evolu-
tionary algorithms. We have used the standard ACO framework,
MYRA [16], for cAnt-Miner and Knowledge Extraction based on
Evolutionary Learning (KEEL) [17] for evolutionary classifiers to
remove any implementation bias in our study. We evaluate the clas-
sification accuracy of the evolutionary algorithms using standard
ten fold stratified cross-validation in order to ensure systematic and
unbiased analysis. The results summarized in Table 1 show the
nature of a dataset in terms of its quantified parameters, along with
the resulting classification accuracies of all the algorithms. We now
systematically discuss the role of evolutionary learning paradigm
and the nature of biomedical dataset on classification accuracy.

5.1 Effect of Evolutionary Algorithm

5.1.1 Pittsburgh-Style – GAssist
The results of our experiments show that GAssist – a Pittsburgh-

style learning classifier – performs better than other evolutionary
rule-learning algorithms. It provides the best overall classification
accuracy of 77.33 and least standard deviation of 16.63. Moreover,
it also outperformed other classifiers for 13 biomedical datasets.
The greater accuracy is a result of its superior fitness function that
combines the accuracy and complexity of an individual using Min-
imum Description Length (MDL) principle to yield optimum rules
[20].

5.1.2 Nature Inspired – cAnt-Miner
cAnt-Miner ranks second and it also closely follows GAssist’s

policy to generate simpler rules. The ants generate rules by select-
ing attribute-value pairs on the basis of their entropy and pheromone
values [2]. Consequently, it uses only high quality attributes (we
model quality with information gain) in the formulation of its rules.
Moreover, its pruning mechanism yields simpler and shorter rules,
thereby, achieving greater classification accuracy.

5.1.3 Michigan-Style – UCS and XCS
The Michigan-style learning classifiers – UCS and XCS – use

online learning to evolve a set of condition-action rules from each
training instance. Thus, they can be more useful in identifying hid-
den patterns and generating information rich rules compared with
simple and generic rules of GAssist and cAntMiner. We there-
fore suggest that if medical experts are available to refine rules,
Michigan-style classifier for knowledge extraction can prove to be
useful.

5.1.4 Genetic Fuzzy – SLAVE and Ishibuchi
The results in Table 1 show that the genetic fuzzy rule learning

classifiers are not generally suitable for classification of biomedical
datasets. The fuzzy rules so generated, however, can be particularly
used to evaluate the uncertainty associated with the prognosis.

5.2 Effect of Nature of Dataset
A careful insight into the results enables a reader to draw an im-

portant conclusion: the variance in accuracy of classifiers on a
particular dataset is significantly smaller compared with the vari-
ance in accuracy of the same classifier on different datasets. The
statement holds for more than 25 datasets; with notable exceptions
being Dermatology, Splice-Junction Gene Sequence, and Promot-
ers Gene Sequence. Consequently, we can say that accuracy is
strongly dependent on the nature of biomedical dataset. We now
discuss important factors that determine the net classification po-
tential of a dataset.

5.2.1 Role of Multiple Classes
We conclude from Table 1 that for multi-class problems, UCS

gives significantly better accuracy compared with other classifiers.
The reason is that it evolves only those highly-rewarded classifiers
of the match set in the correct set, which predict the same class
as that of the training example [24]. In comparison, GAssist has
serious problems in dealing with multi-class problems – specially
when the when the number of output classes are more than 5. On
these datasets (Cardiac Arrhythmia, Dermatology, E-Coli and Thy-
roid0387), the average classification accuracy of UCS is 83.49%
compared with 75.52% of GAssist.

5.2.2 Role of Instances
It is obvious in Table 1 that evolutionary algorithms over-fit on

datasets with small number of instances. Consequently, accuracy
of classifiers on Lung Cancer, Post Operative Patient, Promoters
Gene Sequence and Switzerland Heart datasets severely degrades.
The evolutionary classifiers during training create small disjuncts
with rare cases [25]; and as a result, their accuracy significantly
degrades during testing.

5.2.3 Role of Attributes
The attributes of a dataset vary in three aspects: (1) number, (2)

type (continuous, binary and nominal), and (3) quality. We see
in Table 1 that number and type of attributes have little role in
defining the classification potential of a dataset. Very poor per-
formance of XCS on Splice-Junction Gene Sequence, Promoters
Genes Sequence and Lung Cancer datasets came as a surprise to
us. Our analysis reveal that large number of nominal attributes in
these datasets – 61, 58 and 56 respectively – is the main cause of
their poor performance with XCS. Our conclusion is that XCS is
unable to cater for large number of nominal attributes in a dataset.

Remember, we quantify quality of attributes with information
gain. The graph in Figure 1 clearly shows that classification ac-
curacy and hence, the classification potential of a dataset increases
with an increase in the information gain of its attributes.

5.2.4 Role of Missing Values
The missing or incomplete data degrades the accuracy of learn-

ing algorithms. Therefore, a number of methods like Wild-to-Wild,
mean or mode method, InGrimputation Model, listwise deletion
etc. have been proposed. Figure 2 reveals that GAssist is relatively
more resilient to missing values compared with other algorithms.
GAssist replaces a missing value with the mean of its class for real
valued attributes and with their mode for nominal attributes.
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Figure 1: Average Information Gain vs Classification Accuracy

Figure 2: Missing Values vs Classification Accuracy

5.2.5 Role of Imbalanced Classes
A learning algorithm during classification may develop a bias to-

wards its majority class. However, Figure 3 shows that the net accu-
racy of evolutionary classifiers remains unaffected even in datasets
with high imbalance ratios.

5.2.6 Role of Noise
Classification potential of a dataset is inversely proportional to

level of noise in a dataset. Consequently, accuracy of classifying
noisy datasets is very small (see Figure 4). GAssist shows more
resilience to noise in datasets because of its added generalization
pressure with bloat control based on MDL principle. The MDL
principle forces GAssist to reduce the size and length of its indi-
viduals. In short its ‘simple’ evolution policy makes it resilient to
noise.

5.2.7 Combined Effect of Nature of Dataset
Our facet-wise study of dataset parameters show that noise, in-

formation gain and missing values play a significant role in defining
the classification accuracy of an algorithm. We now conclude our
findings in Figure 5 to have a better understanding of the combined
effect. It is obvious in Figure 5 that noise in a dataset effectively de-

termines the classification accuracy and it is inversely proportional
to the classification accuracy of a biomedical dataset. The figure
depicts that high average information gain of a dataset yields bet-
ter classification accuracy, however, low average information gain
of a dataset can produce unpredictable results. The percentage of
missing values has minor impact on the overall classification accu-
racy but the accuracy significantly degrades when the percentage
of missing values in a dataset are more than 15%. The combined
effect of dataset parameters reveal that the classification potential
of a dataset can be estimated by analyzing its complexity using our
proposed parameters. This can help researchers to take necessary
preventive measures in pre-processing the dataset to ensure better
classification accuracy.

6. CONCLUSION
In this paper, we have quantified the complexity of biomedical

datasets in terms of missing values, noise, imbalance ratio and in-
formation gain. The effect of complexity on classification accuracy
is evaluated using six well-known evolutionary rule learning algo-
rithms. The results of our experiments show that GAssist – in most
of the datasets – provides better classification accuracy compared
with other algorithms. Our analysis reveals that the classification



Figure 3: Class Imbalance (Log Scale) vs Classification Accuracy

Figure 4: Noise vs Classification Accuracy

accuracy of a biomedical dataset is, however, a function of the na-
ture of biomedical dataset rather than the choice of a particular evo-
lutionary learner. The major contribution of this paper is a unique
methodology to determine the classification potential of a dataset
by analyzing the complexity of dataset. In the future, we would
like to present generated rules of different classifiers to the medical
specialists for their expert feedback.
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