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Abstract. Biomedical datasets pose a unique challenge to machine learning and
data mining algorithms for classification because of their high dimensionality,
multiple classes, noisy data and missing values. This paper provides a compre-
hensive evaluation of a set of diverse machine learning schemes on a number of
biomedical datasets. To this end, we follow a four step evaluation methodology:
(1) pre-processing the datasets to remove any redundancy, (2) classification of
the datasets using six different machine learning algorithms; Naive Bayes (proba-
bilistic), multi-layer perceptron (neural network), SMO (support vector machine),
IBk (instance based learner), J48 (decision tree) and RIPPER (rule-based induc-
tion), (3) bagging and boosting each algorithm, and (4) combining the best ver-
sion of each of the base classifiers to make a team of classifiers with stacking and
voting techniques. Using this methodology, we have performed experiments on
31 different biomedical datasets. To the best of our knowledge, this is the first
study in which such a diverse set of machine learning algorithms are evaluated
on so many biomedical datasets. The important outcome of our extensive study
is a set of promising guidelines which will help researchers in choosing the best
classification scheme for a particular nature of biomedical dataset.

Keywords: Classification, Machine Learning, Biomedical Datasets.

1 Introduction

Recent advancements in the field of machine learning and data mining have enabled
biomedical research to play a direct role in improving the general quality of health
care. This fact is supported by a large number of applications developed in the field
of biomedical informatics to provide solutions to a number of real-world problems.
The modern research on mass spectrometry based proteomics, genome-wide associa-
tion, DNA sequencing and microarrays is made possible by the efficient processing of
high-dimensional biomedical data. The trend of keeping permanent medical records in
the health management information systems is becoming a standard practice in many
countries of the world. Moreover, modern medical equipments and diagnostic tech-
niques generate heterogenous and voluminous data [1]. The ill-structured nature of the
biomedical data, thus, require intelligent machine learning and data mining algorithms
for automated analysis in order to make logical inferences from the stored raw data.
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A diverse set of machine learning and data mining algorithms have been previously
used to extract useful information from the biomedical data. These algorithms usually
perform regression, clustering, visualization or classification of the biomedical data
in order to assist the medical consultants in the decision making process1. The well-
known machine learning and data mining based classification algorithms use proba-
bilistic methods, rule-based learners, linear models such as neural networks and support
vector machines, decision trees and instance-based learners. Further, a combination of
different classification algorithms can result in improved classification accuracy [5].
The commonly used ensemble techniques are bagging, boosting, voting and stacking.
The use of evolutionary algorithms in recent years is also gaining popularity for dis-
covering knowledge in medical diagnoses [2]. However, their evaluation is beyond the
scope of this paper.

Despite the great work and diversity in the existing machine learning schemes, no
significant work is done so far to assist a researcher in selecting a suitable classification
technique for a particular nature of biomedical dataset. In this paper, we provide a com-
prehensive empirical study on classification of 31 different biomedical datasets using a
diverse set of machine learning schemes. We adopt a four step methodology to ensure a
comprehensive evaluation of different machine learning schemes: (1) preprocessing the
dataset using attribute selection, (2) providing the preprocessed features’ set to six well-
known classification algorithms, (3) bagging and boosting each of these classifiers, and
(4) creating an ensemble of classifiers by using stacking and voting.

The main subject of this paper is to provide a systematic and unbiased evaluation of
the existing machine learning schemes to resolve the uncertainties associated with the
choice of classifier and the nature of biomedical data. We follow a question oriented
research methodology to resolve a number of pertinent questions like: (1) Can the pre-
dictive results of classification be improved by diversity in machine learning schemes
or is it largely a function of the dataset under consideration?, (2) What is the signifi-
cance of the nature of biomedical dataset on classification accuracy?, (3) How various
parameters of the dataset (instances, classes, missing values, number of attributes, type
of attributes) affect the accuracy of classification?, (4) How the choice of a machine
learning scheme affects the classification accuracy?, and (5) Which machine learning
schemes are more useful and in what cases? The answers subsequently lead us to pro-
pose a number of guidelines that we believe will provide valuable support to researchers
working on the classification of biomedical datasets.

Organization of the Paper. In the next section, we provide a brief review of the related
work. In Section 3, we discuss the biomedical datasets used in our study. We present a
review of our classification schemes in Section 4. In Section 5, we report the results of
our experiments which are followed by the standard guidelines. Finally, we conclude
the paper with an outlook to our future work in Section 6.

2 Related Work

We now provide a brief overview of recent research done to analyze the accuracy of
different machine learning schemes on various biomedical domains. In [3], the authors

1 The scope of this paper is confined to the classical classification problem for prognosis.
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study the impact of feature selection on the classification accuracy using an email and
a drug discovery dataset. The authors in [4] present an empirical study of bagging and
boosting techniques using neural networks and decision trees on 23 randomly cho-
sen datasets. The results of their study suggest that bagging provides relatively better
accuracy compared with each of the individual classifiers whereas boosting produces
inconsistent results. The work in [5] evaluates the accuracy of different ensemble com-
binations of six classification algorithms (LDA, 1-NN, Decision Tree, Logistic Regres-
sion, Linear SVMs and MLP) on high-dimensional cancer proteomic datasets. In [6],
the authors compare the performance of data mining schemes with the logistic and re-
gression techniques on a clinical database of cancer patients. Their results show that
pre-processing the data by attribute selection significantly improves the performance
of a classifier while meta-learning is of little value. The study of machine learning
methods on Atherosclerosis in [7] involves testing of different categories of machine
learning schemes to predict future disorders and death causes. A comprehensive survey
of biomedical applications utilizing machine learning schemes is done in [8].

The commonly observed methodology among medical researchers in various papers
is to experiment on the dataset with only limited number of algorithms from the ma-
chine learning repository and select the one which gives relatively better results for
their particular domain. The selection of machine learning algorithms for a particular
domain appears to be inclined towards their own view of a particular scheme. Conse-
quently, no guidelines are available to select the best classifier for a particular type of
data. In our study, we provide a set of guidelines that will help a researcher in choosing
an appropriate classifier based on a particular type of dataset.

3 Biomedical Datasets

Biomedical datasets are generally associated with high-dimensional features and multi-
ple classes. The datasets obtained from clinical databases contain various systemic and
human errors [9]. The noisy nature, sparseness and missing values hamper the classi-
fication accuracy of the machine learning schemes. These inconsistencies demand to
treat the classification problem of biomedical datasets as a separate domain. To com-
prehensively evaluate the performance of various classification schemes on biomedical
datasets, we have selected as many as 31 biomedical datasets publicly available from
the UCI Machine Learning repository [10] and Center for Cancer Research [11]. Our
selection criterion is to choose well-known datasets from a number of different biomed-
ical domains. The summary of the datasets used in our study is shown in Table 1.

Our repository contains high-dimensional datasets (Ovarian 8-7-02 has a total of
15, 154 attributes), multi-class datasets (Thyroid0387 has a total of 32 classes followed
by Cardiac Arrhythmia with 16 classes), imbalanced datasets (class distribution of Hy-
perthyroid, Cardiac Arrhythmia and Cleveland Heart is highly uneven), datasets with
many instances (Protein Data contains 21, 618 instances), datasets with missing val-
ues (Hungarian Heart and Horse Colic contains up to 20 percent missing values) and
datasets of DNA sequencing and mass spectrometry. We believe that the chosen datasets,
therefore, encompass all important domains of biomedicine and bioinformatics.
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Table 1. The summary of used datasets: The table shows the name of datasets in the alphabetical
order; their year of donation; total number of instances; total classes; number of continuous,
binary and nominal attributes; and the percentage of missing values in the attributes

Dataset Year Instances Classes Attributes Missing
Continuous Binary Nominal Values (%)

Ann-Thyroid 1987 7200 3 6 15 0 0
Breast Cancer 1992 699 2 1 0 9 0.23
Breast Cancer Diagnostic 1995 569 2 31 0 0 0
Breast Cancer Prognostic 1995 198 2 33 0 0 0.06
Cardiac Arrhythmia 1998 452 16 272 7 0 0.32
Cleveland-Heart 1990 303 5 10 3 0 0.15
Contraceptive Method 1997 1473 3 2 3 4 0
Dermatology 1998 366 6 1 1 32 0.06
Echocardiogram 1989 132 2 8 2 2 4.67
E-Coli 1996 336 8 7 0 1 0
Haberman’s Survival 1999 306 3 3 0 0 0
Hepatitis 1988 155 2 6 0 13 5.67
Horse Colic 1989 368 2 8 4 15 19.39
Hungarian Heart 1991 294 5 10 3 0 20.46
Hyper Thyroid 1989 3772 5 7 21 1 2.17
Hypo-Thyroid 1990 3163 2 7 18 0 6.74
Liver Disorders 1990 345 2 6 0 0 0
Lung Cancer 1992 32 3 0 0 56 0.28
Lymph Nodes 1988 148 4 3 9 6 0
Mammographic Masses 2007 961 2 1 0 4 3.37
New Thyroid 1992 215 3 5 0 0 0
Ovarian 8-7-02 2002 253 2 15154 0 0 0
Pima Indians Diabetes 1990 768 2 8 0 0 0
Post Operative Patient 1993 90 3 0 0 8 0.44
Promoters Genes Sequence 1990 106 2 0 0 58 0
Protein Data - 21618 3 0 0 1 0
Sick 1989 2800 2 7 21 1 2.24
Statlog Heart - 270 2 7 3 3 0
Switzerland Heart 1991 123 5 10 3 0 17.07
Thyroid0387 1992 9172 32 7 21 1 5.50
Splice-Junction Gene Sequence 1992 3190 3 0 0 61 0

4 A Review of Classification Schemes

We adopt a four step evaluation methodology to ensure an unbiased evaluation of differ-
ent machine learning schemes: (1) preprocessing the dataset using attribute selection to
remove redundant and useless features, (2) providing the preprocessed features’ set to
six well-known classification algorithms, (3) bagging and boosting each of these classi-
fiers to analyze their merits in improving the accuracy, and (4) finally creating a team of
classifiers by combining the the best version (individual, bagged and boosted) of each
of the six base classifiers using stacking and voting in order to further enhance the ac-
curacy. We use the standard implementations of these schemes in Wakaito Environment
for Knowledge Acquisition (WEKA) [12].

4.1 Data Pre-processing

The attribute selection technique [13] is used as a pre-processing filter to remove the
redundant or useless features in the dataset. We use Best First algorithm for the attribute
selection that performs greedy hill climbing with a backtracking search method [12].
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4.2 Base Classifiers

Naive Bayes. Naive Bayes (NB) utilizes a probabilistic method for classification by
multiplying the individual probabilities of every attribute-value pair [14]. This simple
algorithm assumes independence among the attributes and even then provides excellent
classification results.

Neural Networks using Multi Layer Perceptron. The Multi Layer Perceptron (MLP)
consists of input layer (attributes), output layer (classes) and hidden layer(s) that are
interconnected through various neurons. The back propagation algorithm tends to op-
timize the weights of these connections through training instances of the dataset [15].
We have used default parameters for MLP in WEKA. The number of epochs is equal to
500, the learning rate is 0.3 and the momentum of updating weights is 0.2.

Support Vector Machines using Sequential Minimal Optimization. The Support
Vector Machine (SVM) algorithm builds a hyperplane to separate different instances
into their respective classes [18]. A pairwise classification scheme is used to do multi-
class classification. We use Sequential Minimal Optimization (SMO) which is a fast
and an efficient version of SVM implemented in WEKA.

Instance Based Learner. The Instance Based Classifier (IBk) is the simplest among
the algorithms used in our study [16]. The classification is done on the basis of a ma-
jority vote of k neighboring instances. We have used k=5 while taking default values
of WEKA for rest of the parameters. The window size is zero that allows maximum
number of instances in the training pool without replacements.

Decision Tree. The decision tree (J48) is an implementation of C4.5 in WEKA. The
tree comprises of nodes (attributes) at every stage that are structured with the help of
training examples [17].

Inductive Rule Learner. Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) is a propositional rule learner that defines a rule based detection model and
seeks to improve it iteratively by using different heuristic techniques [19]. The con-
structed rule set is then used to classify new instances. We have implemented this rule
based system in WEKA using JRIP with default parameters.

4.3 Resampling Based Ensembles

Bagging. Bagging combines the multiple models generated by training a single algo-
rithm on random sub-samples of a given dataset [20]. Unbiased voting is used during
the fusion process.

Boosting. Boosting, in contrast to bagging, uses weighted voting to generate more mis-
classified instances in its successive models [21].

4.4 Meta-learning Based Ensembles

Stacking. Stacking combines the outputs of two or more base-level classifiers by train-
ing them with a meta-learner [22]. In all of our experiments, we use Naive Bayes as
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a standard meta-learner while the ensemble comprises of the best version (individual,
bagging and boosting) of each of the six different base classifiers.

Voting. Voting is a meta-learning technique that uses different combinations of prob-
ability estimates of base classifiers for classification [23]. The selection criteria for
choosing the six base learners for voting is same as that of stacking. We have imple-
mented voting in WEKA using an average of the probabilities as the combination rule.

5 Experiments, Results and Guidelines

We now report the results of our experiments that we have done to analyze the classi-
fication accuracy of 20 different types of machine learning algorithms on 31 different
biomedical datasets. We use Area Under an ROC (Receiver Operating Characteristic)
Curve (AUC) (0 ≤ AUC ≤ 1) metric to quantify the classification accuracy of an al-
gorithm. AUC is known to be a ‘more complete’ performance metric as compared to
other traditionally used metrics [24], [25]. The ROC curves are generated by varying
the threshold on output class probability. AUC = 100% represents the best accuracy
while AUC = 0% represents the worst accuracy. The results in Table 2 show the mean
AUCs of the machine learning algorithms used in our comparative study on biomedical
datasets. Some of the experiments could not be completed even after running for sev-
eral days and are indicated by blank spaces in our results. We now present our analysis
and important insights on the basis of the results obtained from these experiments. Our
primary motivation is to to investigate the factors that can potentially affect the clas-
sification accuracy of a particular machine learning scheme. The main variables that
determine the classification accuracy are categorized by: (1) the nature of a dataset, (2)
the pre-processing filter, and (3) the choice of a classification scheme.

5.1 How Does the Nature of a Dataset Affect the Classification Accuracy?

The classification accuracy of a given algorithm is largely dependent on the nature
of dataset rather than the algorithm itself. The main characteristics of a dataset are its
attributes, classes and number of instances. We answer the following pertinent questions
to systematically study the nature of a dataset.

Role of Attributes. The attributes of a dataset vary in terms of their quality, number and
type (continuous, binary or nominal). The quality of information that attributes can pro-
vide is an important factor that determines the classification potential of a dataset. The
quality of information can be quantified using well-known parameters like information
gain, entropy, gain ratio etc. We use information gain in our study. The results of our
experiments demonstrate that the classification accuracy is directly proportional to the
information gain of a dataset. The low information gain of datasets like Protein Data,
Liver Disorders and Haberman’s Survival etc is mainly responsible for relatively poor
classification accuracy of all algorithms on them. For example, the Protein Data dataset
has only one attribute with an information gain of just 0.0647 which results in the best
mean AUC value of only 63.27% among all the applied machine learning schemes.
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Table 3. Classification differences with and without attribute selection as pre-processor. Bold
entries in every row represent the best accuracy.

Dataset
With Pre-Processing Without Pre-Processing

Total Net Information Best Mean Total Net Information Best Mean
Attributes Gain AUC Attributes Gain AUC

Liver Disorder 1 0.051 61.00 6 0.057 75.40
Haberman’s Survival 1 0.072 69.70 3 0.072 71.20

Guideline 1: Use information gain to quantify the quality of attributes in order to
determine the classification potential of a dataset.

Role of output Classes. The multiple output classes lead to imbalanced datasets when
the class distribution is not even. Our experiments reveal that the multiclass imbalanced
datasets pose a significant challenge in terms of the classification accuracy. For exam-
ple, the class distributions of Cardiac Arrhythmia (16 classes) and Cleveland Heart (5
classes) datasets are highly imbalanced in favor of one class that logically results in
their relatively low mean AUC values. However, the accuracy significantly improves if
we deploy a team of classifiers. For example, in case of Cardiac Arrhythmia dataset, the
classification accuracy improves from best mean AUC value of 84.92% obtained with
all the individual classifiers to 94.78% when the meta-learning technique of voting is
used. In comparison, for Cleveland Heart dataset, the best mean AUC value increases
from 76.4% to 79.02% when stacking is used.
Guideline 2: Use a team of classifiers for multi-class imbalanced datasets.

Role of Instances. The number of instances, however, have little role on the classifi-
cation accuracy of algorithms. It is the quality of instances quantified with the help of
information gain, which determines the classification potential of a dataset. For exam-
ple, the Lung Cancer dataset has only 32 instances compared to 21, 618 instances of
Protein Data dataset. However, the best mean AUC for the former is 95.95% while for
the later it is just 63.27%. The information gain for both the datasets are respectively
1.521 and 0.0647. This proves our thesis that the large AUC for Lung Cancer dataset
even with small instances is due to the large information gain of its attributes.
Guideline 3: Do not contemplate on the classification potential of a dataset on the
basis of its number of instances only.

5.2 When to Use the Pre-processing Filter?

The attribute selection is used as a pre-processer to remove the redundant and useless
attributes in a dataset. The pre-processing filter in most of the cases improves the clas-
sification accuracy of datasets with the exception of few ones. Therefore, it is important
to identify when to use a pre-processing filter. Our study again suggests that the deci-
sion should be based on the information gain of attributes. If the net information gain
of a dataset is small or the number of attributes become too less after pre-processing,
then the pre-processing filter should not be used. In Table 3, we report the results with
and without pre-processing filter on two of the datasets (Liver Disorder and Haberman’s
Survival) which are relatively challenging for classification. The results prove our hy-
pothesis that we should not use a pre-processing filter if it further degrades the quality
of attributes.
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Table 4. Mean AUCs and standard deviations of six base classifiers over all datasets used in this
study. Bold entries in every row represent the best accuracy.

Classification NB MLP SMO IBk J48 JRIP Mean
Scheme

Individual 83.34 ± 16.99 83.62 ± 15.19 73.25 ± 17.15 81.35 ± 16.54 76.32 ± 17.68 75.1 ± 17.47 78.83 ± 16.84
Bagging 83.52 ± 16.05 84.85 ± 14.57 74.88 ± 16.89 81.78 ± 16.32 81.95 ± 17.18 80.67± 18.73 81.28 ± 16.62
Boosting 80.57 ± 22.88 81.90 ± 21.67 80.57 ± 22.26 76.79 ± 22.05 82.03 ± 22.83 80.98 ± 22.95 80.48± 22.44

Mean 82.48 ± 18.64 83.46 ± 17.14 76.23 ± 18.77 79.97 ± 18.31 80.10 ± 19.23 78.92 ± 19.72 80.20± 18.63

Guideline 4: Do not use attribute selection as a pre-processor filter on the datasets if :
(1) they have low quality information attributes, or (2) the remaining attributes after
the preprocessing are too less to be of any value.

5.3 How Does the Machine Learning Scheme Affect the Classification
Accuracy?

In this section, we analyze the effect of different machine learning algorithms on clas-
sification accuracy of a dataset.

Resampling based Ensembles vs Individual Classifiers? Resampling Based Ensem-
ble techniques are preferable over individual classifiers because the final classification
is done by training the algorithm on different regions of the sample space. As a re-
sult, these ensembles reduce the over fitting bias of an algorithm. Table 4 provides the
net mean AUC’s of six base classifiers with resampling based ensembles over all the
datasets. It is clear that combining multiple resampling methods for classifier enhance-
ment (such as bagging or boosting) are generally more effective than the individual
classifier. Moreover, it is only 30 out of 174 times (17.24%) when a single classifier
produced better accuracies than the respective bagging and boosting models of the clas-
sifiers. Our results show that the overall mean AUC of resampling based ensembles is
80.86% compared to that of 78.83% for individual classifiers.
Guideline 5: Use resampling based classifier enhancement techniques (bagging and
boosting) over individual classifiers.

When is Bagging particularly useful? Bagging neutralizes the instability of algo-
rithms by using unbiased voting procedure for combining multiple samples [12]. This
explains the reason behind the better average AUCs of bagging for all the individual
classifiers. We can see in Table 4 that average AUC for bagging is 81.28% compared
with 80.48% of boosting and 78.83% of the individual classifiers. Moreover, our results
show that 130 out of 179 times (72.63 %) bagging has improved the accuracy of indi-
vidual classifiers. These insights support our argument bagging is a particularly useful
technique for classifier enhancement.
Guideline 6: Use bagging as classifier enhancement to improve the classification ac-
curacy of the individual algorithms.

When is Boosting particularly useful? The biased voting and weighted selection of
instances in boosting often gives inconsistent results compared with those of bagging or
individual classification schemes. The reason is that boosting over fits on noisy datasets
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[4]. The unpredictable behavior of boosting often leads to significantly low AUCs for
unstable algorithms. For example, boosted IBk in Hepatitis dataset decreases the mean
AUC value of individual IBk from 81.96% to 72.05%. Similarly, for the Hyperthyroid
dataset, the mean AUC value of boosted IBk is 70.84% compared with AUC value of
88.84% for the individual classifier. In comparison, boosting significantly improves the
AUC values for stable algorithms. For example, boosted SMO in Sick dataset increases
the AUC of SMO from 49.98% to 91.42%; boosted JRIP in Cardiac Arrhythmia dataset
increases the AUC of JRIP from 64.36% to 83.27%; and boosted J48 in Hyperthyroid
dataset increases the mean AUC value of J48 from 78.58% to 94.80%. We can see in
Table 2 that the improvements due to boosting on SMO, JRIP and J48 are scalable to
other datasets as well. Boosting is particulary suited for SMO because its average AUC
values are 80.57% compared with 74.88% of bagged SMO and simple SMO of 73.25%.
Guideline 7: Use boosting on stable algorithms like SMO, JRIP, and J48 and do not
use it on unstable algorithms like MLP and IBk.

Bagging Naive Bayes vs Individual Naive Bayes? Naive Bayes results are excellent
for datasets like Haberman, Hepatitis, Ovarian 8-7-02, Pima Indian Diabetes and Splice
Junction Gene Sequencing. The classification accuracy of bagging and simple Naive
Bayes is in general better than the boosted Naive Bayes. Therefore, it becomes relevant
to have a guideline when to enhance Naive Bayes with bagging? The problem can be
analyzed by dividing the significant attributes (the attributes after the attribute selection
phase) in two groups: (1) continuous and multinominal attributes having more than n
values, and (2) multinominal attributes having less than n values. If the net information
gain of the first group is greater than that of the second group, then use bagging Naive
Bayes. This conjecture works well with n = 4. For example, the significant attributes in
Hyperthyroid dataset comprise of 3 continuous and 2 binary valued attributes and the
information gain distribution is: (1) total information gain of multinominal attributes
with less than 4 values = 0.0335, and (2) total information gain of other remaining
attributes = 0.14. The results in Table 2 show that the classification accuracy increases
from 92.28% to 92.46% in favor of bagging Naive Bayes compared to the individual
Naive Bayes. In a similar way, the information gain distribution of Cleveland Heart
dataset after attribute selection is: (1) total information gain of multinominal attributes
with less than 4 values = 0.847, and (2) total information gain of other remaining at-
tributes = 0.347. It can be seen in Table 2 that individual Naive Bayes proved to be bet-
ter in this case with a mean AUC of 76.4% compared to 76.3% obtained from bagging
Naive Bayes. The datasets like Breast Cancer Prognostic, Breast Cancer Diagnostic,
Lung Cancer, Contraceptive Method etc. all support this conjecture.
Guideline 8: Use bagged version of Naive Bayes instead of individual one only if
after attribute selection, the net information gain of continuous and multinominal
attributes with more than n values (n = 4) is greater than the information gain of
multinominal attributes with less than n values.

Meta-Learning Based Ensembles - Voting vs Stacking? The criterion that we use
to select the base classifiers for making a good team of classifiers is based on both
their diversity and accuracy. We choose the best version among individual classifier,
their bagged and boosted version for each of the six different individual classifiers, and
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use Naive Bayes as a meta-learner to produce a meta-learning ensemble. Our experi-
ments demonstrate that stacking in general do not improve the classification accuracy
of medical datasets. The mean AUC values of stacking are comparable with those of
other techniques. On the other hand, the classification accuracy of voting is much better
than those of all other classification techniques with an overall average AUC value of
85.08%.
Guideline 9: Use voting instead of stacking for meta-learning ensembles to achieve
better AUC values.

Which classification algorithm is the best? We choose the best classification algo-
rithm on two parameters: (1) overall classification accuracy, and (2) variance in accu-
racy that determines the stability and consistency of an algorithm. We can see from
Table 4 that Bagging MLP not only gives on the average the best overall classification
accuracy with an AUC value of 84.85% but also the least standard deviation of 14.57.
Guideline 10: Use bagging MLP for classification if the nature of a biomedical
dataset is unknown.

6 Conclusion

In this paper, we have presented a comprehensive empirical study of a diverse set of
machine learning algorithms on a large number of biomedical datasets. The diversity
is added by using resampling based ensemble methods of bagging and boosting and
meta-learning techniques of stacking and voting. We conclude that the nature of a given
dataset plays an important role on the classification accuracy of algorithms; therefore,
it is imperative to choose an appropriate algorithm for a particular dataset. We have
identified some general characteristics of a dataset that can be useful in selecting the
most suitable algorithm as per the nature of underlying dataset. We have also evaluated
the performance of various machine learning schemes under different scenarios to study
the effect of diversity on the classification results. The results of our experiments show
that voting in general is the most powerful technique among the compared machine
learning schemes. On the basis of our study, we have been able to formulate 10 generic
guidelines that can help researchers of biomedical classification community to select an
appropriate classifier for their particular problem. In future, we would like to devise a
metaheuristic framework that can recommend the most suitable classifier for the dataset
by analyzing the patterns in the dataset.
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