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a b s t r a c t

This paper considers the issues of efficiency and autonomy that are required to make reinforcement
learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented
that repeatedly adjusts the control policywith the use of previously collected samples, and autonomously
estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor–critic
with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm
for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah
demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an
autonomous way within reasonably short time.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a potentially usefulmethodology
for control optimization. It may be the only feasible approach to
many problems. However, itswidespread use is limited by the total
time many RL algorithms require to solve a given problem. This
time encompasses duration of a single run in collecting appropriate
number of samples multiplied by the number of runs necessary
to tune problem dependent parameters. Selection of appropriate
parameter setting requires learning to start over again, thereby,
making the previously collected data useless. The cost of collecting
data from control process and the elapsed time to handcraft the
parameters makes learning infeasible for many real world tasks.
Ideally, the learner should interactwith the environment in a ‘plug-
and-play’ manner and optimize a control policy in a single trial
with minimum number of data samples. The main focus of this
research is tomake reinforcement learning suitable for real control
applications and minimize the associated implementation costs.

A broad class of RL algorithms that encompass Actor–Critics
(Bhatnagar, Sutton, Ghavamzadeh, & Lee, 2009; Konda & Tsitsiklis,
2003; Peters, Vijayakumar, & Schaal, 2005) and policy gradient
methods (Sutton, McAllester, Singh, & Mansour, 2000; Williams,
1992) optimizes a control policy on the basis of stochastic gradient
estimates. In these algorithms, the control policy is parameterized
by a vector that is optimized incrementally on the basis of the data
coming from the control process. The policy vector adjustment is
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local in the sense that the algorithm moves a small step in the
estimate of the improvement direction; its length is defined by
the step-size of the learning process. The appropriate length of the
step-size depends on the stage of the learning process and setting it
wrong can make the process unstable or prohibitively slow. In this
paper, we present a real-time reinforcement learning algorithm
that is considerably efficient and autonomousdue to: (1) experience
replay—it stores the agent–environment interaction samples in a
database and repeatedly drawsprevious samples—simultaneous to
the interaction—to estimate the improvement direction of policy
vector and speed up learning (Wawrzyński, 2009), and (2) step-size
estimation—it autonomously determines the appropriate step-size
to optimize the learning updates and eliminate the overhead of its
manual tuning (Wawrzyński, 2010).

Optimization by means of improvement direction estimates is
a tool commonly used in RL but it is not unique to this field. It
is the main principle of a wide class of stochastic approximation
algorithms (Kushner & Yin, 1997). In all these methods the step-
size plays a key role in controlling their speed and stability. Despite
significance of the problem of step-size estimation, its generally
applicable solution has not been found.

1.1. Related work

A lot of effort is made in the reinforcement learning commu-
nity to speed up the learning methods by using the previously
collected samples. The concept of reusing samples evolved from
recomputing previous experience by means of dynamic program-
ming (Sutton, 1990). Application of the importance sampling tech-
nique (Rubinstein, 1981)made it possible to optimize a parametric
control policywith the use of experience gainedwith other policies
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(Hachiya, Peters, & Sugiyama, 2011; Peshkin & Mukherjee, 2001).
Kober and Peters (2011) proposed an algorithm called PoWER—
Policy Learning by Weighting Exploration with the Returns—that
combines the previous experience by per-decision importance
weighting technique. The approach to sample reuse developed
here is experience replay (Adam, Busoniu, & Babuska, 2012; Ci-
chosz, 1999) applied to actor–critics with the use of the random-
ized truncated estimators (Wawrzyński, 2009).

Real world applications of reinforcement learning require a
number of parameters to be defined and empirically tuned, e.g.,
reward function, policy structure, step-size, exploration noise,
discount factor, and others specific to the learning algorithm in
use. Despite several promising approaches to provide leverage
for these overheads such as the use of apprenticeship learning to
find reward function (Abbeel & Ng, 2005), dynamic evolution of
policy parameters to get its appropriate size and representation
(Kormushev, Ugurlu, Calinon, Tsagarakis, & Caldwell, 2011), the
parameter that remains difficult to determine autonomously in
reinforcement learning is the step-size of the learning process. The
work (Sutton, 1992a, 1992b) established delta-bar-delta algorithm,
introduced earlier by Jacobs (1988) as a generally applicable
approach to step-size estimation in RL. The method requires
the initial step-size to be specified and collapses if this value
is too large, which delimits its autonomous use. Consequently,
the solution to the problem of step-size determination in
reinforcement learning is still a subject of active research (George
& Powell, 2006; Noda, 2009; Schraudolph, Yu, & Aberdeen, 2006).

Many approaches to step-size estimation have been designed
as tools for online neural network training. Algorithms of this
type include delta-delta (Silva & Almeida, 1990), aforementioned
delta-bar-delta, and stochastic meta-descent (Schraudolph &
Giannakopoulos, 2000). Among others, step-sizes can be estimated
to ensure Lyapunov-stability of the process (Behera, Kumar, &
Patnaik, 2006; Kathirvalavakumar & Subavathi, 2009).

Most methods of autonomous or adaptive step-size estimation
are designed as recursions that are updated from one sample
to another (George & Powell, 2006). This design is often based
on some problem-dependent parameters and may be sensitive
to wrong initialization or nonstationarity. In this work we build
upon the fixed-pointmethod of step-size estimation (Wawrzyński,
2010) which has a different design to remedy the aforementioned
problems. By computing gradient estimates always at two
points it captures global characteristics of the process, thereby,
obtaining robustness and independence from any parameters. In
Wawrzyński and Papis (2011) this approach was specialized to
neural-network on-line training, e.g., each weight of the network
was assigned a separate step-size. Here the original algorithm is
enhanced and adopted to provide autonomy to RL with experience
replay.

1.2. Contributions

The purpose of this paper is to present a reinforcement
learning framework that is fast and autonomous enough for on-
line optimization of control of systems with complex dynamics
andmultidimensional, possibly continuous, state and input spaces.
The contribution of this papermay be summarized in the following
points:

• An enhanced fixed point method of step-size estimation
(Wawrzyński, 2010) is presented.

• The above method of step-size estimation is combined with
experience replay for actor–critic class of RL algorithms
(Wawrzyński, 2009).

• The proposed approach is implemented on two simulated
robot-control problems, both with complex dynamics and rich
state and action spaces, namely octopus arm and half-cheetah.

The rest of the paper is organized as follows: Section 2 for-
mulates the reinforcement learning problem followed by the
description of actor–critic algorithmwith experience replay in Sec-
tion 3. In Section 4, we describe the fixed pointmethod of step-size
adaptation in a generic stochastic descent procedure. The resulting
actor–critic reinforcement learning algorithm with experience re-
play and step-size estimation is proposed in Section 5. Experimen-
tal study is presented in Section 6 on challenging learning control
problems. The last section concludes the paper with an outlook to
future work.

2. Problem formulation

We consider the standard reinforcement learning setup under
the Markov Decision Process (MDP) framework (Sutton & Barto,
1998). The problem concerns an agent that observes the state of
its environment, st , in discrete time, t = 1, 2, 3, . . . , performs an
action, at , whichmoves the environment to the next state, st+1, and
gives the agent a reward, rt ∈ R. The environment is in general
stochastic which means that the consecutive state, st+1, is a result
of sampling from the transition distribution conditioned on the
preceding state, st , and the action, at . Mathematically,

st+1 ∼ Ps(·|st , at).

The rewardmay depend deterministically on the current action
and the next state, rt = r(at , st+1). A particular MDP is a tuple
⟨S,A, Ps, r⟩ where S and A are the state and action spaces,
respectively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state
transition distributions and r is the reward function. The transition
distributions, Ps, and the reward function, r , are initially unknown
to the agent. The goal of learning is to determine a stochastic
control policy π that assigns actions to states such that in each
state the agent may expect the highest rewards in the future. Note
that the control policymaps each state into a distribution of actions
rather than a single action. Performing different actions in each
state, the agent is able to differentiate good actions from inferior
ones in each state. The control policy π is parameterized by the
policy vector, θ , e.g., a set of weights in a neural network. It can be
represented as

a ∼ π(·; s, θ).

Let us denote by πθ the policy of the form π with the fixed
parameter θ . The quality of this policy is measured by the value-
function Vπθ defined as the expected value of the discounted sum
of future rewards the agent may gain in the future, starting from
the given state, s, at a certain time, t , and the policy πθ :

Vπθ (s) = E


i≥0

γ irt+i
st = s, policy = πθ


. (1)

The parameter γ ∈ [0, 1) is the discount factor that defines the
weight of distant rewards in relation to those obtained sooner. The
quality of a policy may also be evaluated using the action-value
function Q πθ , defined as

Q πθ (s, a) = E


i≥0

γ irt+i
st = s, at = a, policy = πθ


. (2)

It is the expected value of the same sum, but here it also depends
on the first action to be performed, that is the action performed in
the given state. This function is crucial for the policy optimization
as it tells good actions from inferior ones in the same state.

We seek a learning algorithm that can optimize the control pol-
icy (i) without parameters determined experimentally, (ii) within
short time of agent–environment interaction, but not necessarily
after small amount of computation.
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Algorithm 1. The classic actor–critic.

0: Set yθ = 0, yυ = 0, t = 1. Initialize θ and υ
1: Choose the action: at ∼ π(· ; st , θ)
2: Execute at , evaluate st+1 and rt
3: Calculate the temporal difference dt(υ)
4: dt(υ) = rt + γ V̄ (st+1; υ)− V̄ (st; υ)
5: Update the actor:
6: yθ := (γ λ)yθ + βθt ∇θ lnπ(at; st , θ)
7: θ := θ + yθdt
8: Update the critic:
9: yυ := (γ λ)yυ + βθt ∇υ V̄ (st; υ)

10: υ := υ + yυdt
11: Assign t := t + 1 and repeat from Point 1

3. Actor–critic with experience replay

This section presents actor–critic algorithms (Barto, Sutton,
& Anderson, 1983; Bhatnagar et al., 2009; Kimura & Kobayashi,
1998; Konda & Tsitsiklis, 2003) and the way of its speeding-up by
experience replay (Adam et al., 2012; Cichosz, 1999; Wawrzyński,
2009). Particular attention is paid to the ‘classic’ actor–critic in
the form presented by Kimura and Kobayashi (1998) because this
algorithm is conceptually the simplest among its family to which
the ideas presented in further sections are directly applicable.

3.1. Classic Actor–Critic

The classic actor–critic algorithm employs two data structures.
The first one is an actor, π(a; s, θ), that represents a stochastic
control policy to generate random actions on the basis of the given
state and the policy vector θ ∈ Rnθ . The second one is a critic,
V̄ (s; υ), that represents an approximator of the value function (1)
parameterized by the critic vector υ ∈ Rnυ . The algorithm is based
on a special estimator of the action-value function Q πθ (st , at)
(Eq. (2)). This estimator has the form:

Rλt = rt + γ V̄ (st+1; υ)

+


i≥1

(γ λ)i

rt+i + γ V̄ (st+i+1; υ)− V̄ (st+i; υ)


. (3)

The parameter λ ∈ [0, 1] defines howmuch Rλt is influenced by the
value-function approximator, V̄ , and the true rewards, r . For λ = 1
the estimator is based on true rewards only and thus unbiased, but
its variance may be very large. For λ = 0 variance of the estimator
is the smallest, but it is biased by the inaccuracy of the value-
function approximator. Moderate values of λ balance the bias and
the variance of the estimator.

The classic actor–critic is sketched in Algorithm 1. It can be
verified that after a visit in state st , for t = 1, 2, . . . , the algorithm
modifies the policy vector θ by the product βθt φt where βθt is
a step-size (small positive number) and φt is the policy vector
improvement direction estimate given byφt =


Rλt − V̄ (st; υ)


∇θ lnπ(at; st , θ), (4)

where∇θ means gradientwith respect to θ . (For λ = 0, themodifi-
cation takes place in step t , for λ > 0 it is also partially distributed
over further steps). Consequently, if the action at turns out to bring
rewards, Rλt , larger than V̄ (st; υ), i.e., the rewards expected in state
st , then the probability of action at in state st is being increased.
If, conversely, the action turns out to bring rewards smaller than
expected, then its probability is being decreased.

The purpose of the critic, V̄ (s; υ) is to approximate the expected
value of Rλt . Therefore, a visit in state st induces a modification of
the critic vector υ by the product βυt ψt where βυt is a step-size and

Algorithm 2. Actor–Critic with Experience Replay. Estimators
mentioned in Steps 6 and 7 are based on the samples in a database.

1: t := 1, Initialize θ and υ
2: Choose and execute an action, at ∼ π(· ; st , θ)
3: Assign πt = π(at; st , θ)
4: Repeat ν(t) times, begin
5: Draw i ∈ {t − N + 1, t − N + 2, . . . , t}
6: Adjust θ along an estimator of φ(si, θ, υ):
7: θ := θ + βθt

φr
i (θ, υ)

8: Adjust υ along an estimator of ψ(si, θ, υ):
9: υ := υ + βυt

ψ r
i (θ, υ)

10: End
11: Register the tuple ⟨st , at , πt , rt , st+1⟩ in the database
12: Make sure only N most recent tuples remain in the

database.
13: Assign t := t + 1 and repeat from Line 2

ψt is the critic vector improvement direction estimate:ψt =

Rλt − V̄ (st; υ)


∇υ V̄ (st; υ). (5)

3.2. Classic actor–critic with experience replay

The idea of experience replay is to repeatedly recall previous
pieces of experience and apply them to update the current policy
as a sequential RL algorithm (like the classic actor–critic) would if
they have just happened. This idea was applied to actor–critics in
Wawrzyński (2009). Namely, let us denote by

φ(s, θ, υ) = E
φt
st = s, θ, υ


(6)

a direction in which θ is on average modified to increase the
rewards expected in state s. Also, let us denote by

ψ(s, θ, υ) = E
ψt

st = s, θ, υ


(7)

a direction in which υ is on average modified to increase the
accuracy of the value function approximation in state s.

After each instant t , the classic actor–critic estimatesφ(st , θ, υ),
i.e., the direction of policy improvement, and adjusts the policy
vector θ along the estimate. Before the next instant t , the modi-
fied algorithm repeatedly chooses one of the recently visited states
at random, si, estimates φ(si, θ, υ), and modifies the policy vector
along the estimate. Essentially both algorithms achieve the same
goal, but the modified one improves the current actor and critic
with the use of thewhole gathered experience rather than only the
present event, like the classic method. Due to more exhaustive ex-
ploitation of information experience replay leads to faster learning
at the cost of additional computation.

In Wawrzyński (2009), the randomized-truncated estimators
are introduced for estimating φ(si, θ, υ) and ψ(si, θ, υ). To
define them, let b be the upper limit of the randomized trun-
cated estimators with b > 1, θi+j be the policy vector applied
to generate ai+j, α ∈ [0, 1) and K be drawn independently from
Geom(ρ) the geometric distribution1with parameter ρ ∈ [0, 1).
The randomized-truncated estimators,φr

i (θ, υ) andψ r
i (θ, υ) have

a generic form that in the case of classic actor–critic is reduced toφr
i (θ, υ) = ∇θ lnπ(at; st , θ)

×

K
k=0

αkdi+k(υ)min


k

j=0

π(ai+j; si+j, θ)

πi+j
, b


, (8)

1 That is, random variable K of values in {0, 1, 2, . . .} has distribution Geom(ρ),
iff P(K = m) = (1 − ρ)ρm for nonnegative integerm.
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ψ r
i (θ, υ) = ∇υ V̄ (st; υ)

×

K
k=0

αkdi+k(υ)min


k

j=0

π(ai+j; si+j, θ)

πi+j
, b


(9)

where

di(υ) = ri + γ V̄ (si+1; υ)− V̄ (si; υ),

is the temporal difference and πi+j is the probability of the action
taken at instant i + j (or it is the density if A is continuous). Re-
membering the definition of Rλt (Eq. (3)) makes it easy to notice the
similarity between φt (Eq. (4)) and φr

i (Eq. (8)), and between ψt

(Eq. (5)) and ψ r
i (Eq. (9)). Though, there are two important differ-

ences. First, the infinite sum in Eq. (3) is replaced by the finite one
with appropriately designed random limit in Eqs. (8) and (9). Sec-
ond, truncated density ratios are introduced in order to compen-
sate for the difference between the current policy and the ones that
generated the actions at , at−1, . . . present in the database.

The actor–critic with experience replay is presented in Algo-
rithm 2. The number of computation steps after t-th control step
is defined by the function ν(t). Since computation is carried out
on-line, this function is bounded from above. It should also be lim-
ited for small t to prevent overtraining with too few samples in the
database. (In Section 5 this function is discussed in more detail.)

3.3. Generalized actor–critic with experience replay

Experience replay may be applied to the classic actor–critic to
increase its learning speed, but also to a wide class of sequential
actor–critic algorithms. As shown in Wawrzyński (2009) the
sufficient condition is that each step in the environment prompts
the original algorithm to do modifications (possibly distributed
in time) of the policy vector and the critic vector with estimates,
respectively,φt and ψt of the generic form

Gt(θ, υ)

k≥0

(αρ)kzt,k(θ, υ)

whereGt is a vector defined by st and at , α ∈ [0, 1), ρ ∈ [0, 1), and
zt,k ∈ R is defined by st+k, at+k, rt+k, st+k+1, and possibly at+k+1.

4. Fixed point method of step-size estimation

The actor–critic algorithm with experience replay repeatedly
samples data and uses it to compute a certain vector with which it
updates parameters θ and υ . This pattern of operation places it in a
wide class of optimization algorithms based on stochastic gradient
descent (Kushner & Yin, 1997). Each algorithm of that type defines
a sequence

θt+1 = θt − βtg(θt; ξt), t = 1, 2, . . . (10)

in which θ ∈ Rnθ is a parameter to be optimized, βt , t = 1, 2, . . .
is a sequence of step-sizes, ξt , t = 1, 2, . . . is a sequence of data
samples and g is a function such that for random ξ the expected
value of−g(θ, ξ) defines the direction towards the localminimum
of a certain quality index, J : Rnθ → R. Typically this direction is
the opposite of the gradient

Eg(θ, ξ) = ∇J(θ).

For example, suppose a feedforward neural network is trained
to approximate a function from given samples. Then θ is the
vector of neural weights, J is the quality index, ξ represents an
input–output pair, and g is the gradient computed by means of
e.g., error backpropagation. In order to train the network, the
input–output pairs may be sampled repeatedly, and its weights
may be adjusted according to Eq. (10), which is exactly how the

well established back-propagation algorithm works (Rumelhart,
Hinton, & Williams, 1988).

For the sequence (10) to have convergence guarantees, a set of
requirements needs to be fulfilled (Kushner & Yin, 1997). Among
others, the sequence of step-sizes has to be vanishing at an
appropriate pace:

t≥1

βt = +∞,
t≥1

β2
t < +∞.

(11)

Unfortunately the practical value of the above conditions is limited.
Even if they are satisfied, the step-sizes may still be too large and
hence make the convergence process unstable, or too small and
hence yield a very slow convergence.

The fixed point method of step-size estimation addresses this
issue by autonomously setting the step-sizes (Wawrzyński, 2010).
The method is based on the following principles:

1. The process (10) is divided into parts such that within each part
the step-size remains constant. The length, n, of a part starting
at moment t is kept large enough to enable estimation of the
expected value of g(θt , ξ)with sufficient accuracy.

2. The sums Gt,n and G∗
t,n are computed for each part beginning at

time t and ending at time t + n

Gt,n =

n−1
i=0

g(θt+i, ξt+i), G∗

t,n =

n−1
i=0

g(θt , ξt+i). (12)

where the vector Gt,n is proportional to the displacement of
the point θ between instant t and t + n, and the vector G∗

t,n
is proportional to the displacement of the point θ if all the
gradient estimators g are calculated using θt .

3. At the end of each part the discrepancy between G∗
t,n and Gt,n

is registered. On average, it increases with the ratio of the
step-size used and the optimal one giving fastest convergence.
Therefore, if the discrepancy is too small, the step-size is being
increased. If it is too large, it is decreased. If it is radically too
large, then instability of the process is detected, the step-size is
radically decreased, and θ moves back to the point where the
part began.

This last principle is illustrated in Fig. 1. For a very small β , the
vector θt+i moves through a flat slope of the function J . This
results in small differences between g(θt , ξt+i) and g(θt+i, ξt+i),
thereby, making the discrepancy between Gt,n and G∗

t,n small as
well. The speed of the local minimum search can be increased
with larger values of β . However, if β is too large, θt+i jumps
over the minimum of the function to be optimized. This creates
large differences between g(θt , ξt+i) and g(θt+i, ξt+i) manifested
by large discrepancy between Gt,n and G∗

t,n.
The papers (Wawrzyński, 2010; Wawrzyński & Papis, 2011)

present a statistical analysis to formalize the above intuitive
principles in a simple, unidimensionalmodel. Since each g(θt , ξt+i)
in (12) is an unbiased estimate of ∇J(θt), the value 1

nG
∗
t,n is also an

unbiased estimator of ∇J(θt) and its quality increases with n. The
model considers n that ensures signal-to-noise ratio of 1 in 1

nG
∗
t,n,

namely

n =
Eθt ∥g(θt , ξ)∥

2

∥∇J(θt)∥2
. (13)

For n of that size, and constant α0 ∼= 0.15 the difference

α0∥G∗

t,n∥
2
− ∥G∗

t,n − Gt,n∥
2 (14)

is on average equal to 0 if the step-size is optimal for fast
convergence of (10). If the step-size is smaller than optimal, the
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Fig. 1. The sketches depict contour lines of three different functions J with equal ∇J(θt ), β , and g(θt , ξt+i) for i ≥ 0. In n steps starting from t , the parameter in the J
domain evolves from θt to θt+n = θt − βtGt,n . Left: Small curvature of J in relation to β , causes small difference of −βtGt,n and −βtG∗

t,n . Middle: Moderate curvature of J
causes moderate difference between −βtGt,n and −βtG∗

t,n . Right: Very large curvature of J relatively to β causes instability of the optimization process which is manifested
by divergence of −βtGt,n and −βtG∗

t,n that grows with n.

first term of (14) is larger than the latter, and for too large step-
size, the relation is opposite. Therefore, the difference (14) on
average indicates the direction in which the step-size should be
modified, i.e., increased or decreased. In other words, the step-
size is stabilized at the best level when on average the discrepancy
∥G∗

t,n−Gt,n∥
2 is stabilized at the value ofα0∥G∗

t,n∥
2. Also, if the term

(14) with larger α0 is applied to adjust the step-size, then the step-
size is being stabilized at a higher level than one that is best for the
purpose of static optimization (10). This last property will become
useful in the next section.

In order to apply the same principle to multidimensional θ , we
will consider only the direction of gradient estimate, that is wewill
project Gt,n on G∗

t,n and consider the discrepancy between G∗
t,n and

the projection. The indicator of step-size adjustment (14) will thus
take the form

α0∥G∗

t,n∥
2
− ∥G∗

t,n − proj(Gt,n,G∗

t,n)∥
2, (15)

for

proj(G,G∗) = G∗GTG∗/(∥G∗
∥
2
+ ϵ) (16)

and ϵ being a small number that prevents division by zero.
The discussion above leads to Algorithm 3 for autonomously

setting the step-sizes. It divides the learning process into parts or
estimation periods in which the step-size β remains fixed. In order
to compute n according to (13) the fraction (L/M) estimates

Eθt ∥g(θt , ξ)∥
2

such that L adds ∥g(θt , ξt+i)∥
2 and M counts them. The fraction

(L′/M ′) estimates ∥∇J(θt)∥2 on the basis of the following property.
Let ξ and ξ ′ be sampled independently from the same distribution.
Then we have

Eθt g(θt , ξ)
Tg(θt , ξ ′) = Eθt g(θt , ξ)

TEθt g(θt , ξ
′)

= ∥∇J(θt)∥2.

The estimator of ∥∇J(θt)∥2 can thus take the form of the statistics

n
i=1

i−1
i′=0

g(θt , ξt+i)
Tg(θt , ξt+i′)

n
i=1

i
=

n
i=1

g(θt , ξt+i)
TG∗

t,i

n
i=1

i
, (17)

whose numerator and denominator are denoted by L′ and M ′,
respectively.

We now explain the algorithm in a step-wise manner for better
understanding. In Line 3, it receives a new training example. In
Lines 6–8, it initializes variables of the fixed point algorithm. In
Lines 9–12, it updates estimators L/M and L′/M ′. In Lines 13–16
it updates the values Gt,n, θt+n,G∗

t,n, and

h = max
i=1,...,n

∥G∗

t,i∥
2,

respectively.

In Line 19, the algorithm checks whether the learning process
is stable. Its instability is manifested by ∥Gt,n − G∗

t,n∥
2 being larger

than h = max1≤i≤n ∥G∗

t,i∥
2. This condition is additionally tightened

in the k0 initial periods. If instability is detected, the estimation
period is reinitialized with halved step-size.

In Lines 21–22, the algorithm checks if the present estimation
period has come to its end. It happens when

n ≥
L/M
L′/M ′

,

that iswhen the estimator of Eg(θt , ξ)has appropriate quality (13).
The period is also finished when

n ≥
3
2
n′,

where n′ is the duration of the previous period. This prevents
the algorithm from getting stuck in local minima (Eg(θ, ξ) = 0
in a minimum and appropriate duration of an estimation period
becomes infinite).

In the end of an estimation period, the step-size is modified
(Line 25) and a new estimation period is started. Namely, the
step-size is incremented proportionally to the statistics (15). The
increment is scaled with the variable h̄, that is determined in Line
26 as the maximal value of previous ∥G∗

t,n∥
2/(1 − α1). Line 24

prevents very small values of the scaling factor h̄, for instance in
the first period.

Every time a new estimation period begins, the estimators
(L/M) and (L′/M ′) becomeobsolete and the amount of information
they carry is decreased. In Lines 27–28, the algorithm decreases
proportionally the weight of previous samples in comparison to
forthcoming ones.

The algorithm updates the step-size after each estimation
period to optimize the process (10). One such period is defined
by the number of steps sufficient to estimate the direction of
movement of θ with unity information-noise ratio. While various
processes may differ substantially, the algorithm divides them
to similar sequences of periods. Coefficients of the algorithm are
chosen to make these sequences converge fast for all underlying
processes (10) at its all stages.

In comparison to its version presented in Wawrzyński (2010),
the algorithm is improved in two directions. First, it estimates
∥Eg(θt , ξ)∥2 better by means of the statistics (17). Second, after
each of first k0 estimation periods it moves the process back to its
origin; at this time only data is collected to estimate ∥Eg(θ0, ξ)∥2

and E∥g(θ0, ξ)∥2. The goal of these modifications is to make the
algorithm exploit data better and be robust to too large initial step-
size.

5. Actor–critic with experience replay and the fixed point
method of step-size estimation

This section discuses combination of the actor–critic algorithm
with experience replay (ac&er) and the fixed point method of
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Algorithm 3. The fixed point method of step-size estimation. The
coefficients applied: α1 = 0.9, α2 = 0.5, k0 = 10, initial β = 1.
FIXED_POINT

1: FP_INITIALIZE(θ0)
2: Repeat
3: Get ξt+n

4: FP_LOOP

g(θt , ξt+n), g(θt+n, ξt+n)


5: Until some-stopping-condition

FP_INITIALIZE(θ0)

6: Assign t = n := 0, k := 1, L = L′
= M = M ′

:= 0
7: Assign G0,0 = G∗

0,0 := 0, h = h̄ := 0, n′
= +∞

8: Initialize θ0, and β

FP_LOOP

g(θt , ξt+n), g(θt+n, ξt+n)


9: L := L + ∥g(θt , ξt+n)∥

2

10: M := M + 1
11: L′

:= max{L′
+ g(θt , ξt+n)

TG∗
t,n, 0}

12: M ′
:= M ′

+ n
13: Gt,n+1 := Gt,n + g(θt+n, ξt+n)
14: θt+n+1 := θt+n − βg(θt+n, ξt+n)
15: G∗

t,n+1 := G∗
t,n + g(θt , ξt+n)

16: h := max{h, ∥G∗

t,n+1∥
2
}

17: n := n + 1
18: newperiod := false
19: If ∥Gt,n − G∗

t,n∥
2 > h∨ (k < k0 ∧ ∥Gt,n − G∗

t,n∥
2 > 0.3h)

then
20: β := β/2, newperiod := true
21: If ¬newperiod ∧ n ≥ 3 ∧ L′ > 0
22: ∧ n ≥ min{(L/M)/(L′/M ′), 3

2n
′
} then begin

23: If k ≥ k0 then begin
24: h̄ := max{h̄, α0∥G∗

t,n∥
2, ∥proj(Gt,n,G∗

t,n)− G∗
t,n∥

2
}

25: β := β exp((α0∥G∗
t,n∥

2
− ∥proj(Gt,n,G∗

t,n)

− G∗
t,n∥

2)/h̄)
26: h̄ := max{α1h̄, (L/M)n/(1 − α1)}
27: L := α1L, M := α1M
28: L′

:= α2L′, M ′
:= α2M ′

29: n′
:= n

30: end
31: t := t + n
32: k := k + 1
33: newperiod := true
34: end
35: If newperiod then
36: n := 0, Gt,0 = G∗

t,0 := 0, h := h/2

step-size adaptation. The original ac&er repeatedly selects data
samples and computes the improvement direction estimators φr

i
andψ r

i to adjust the parameters of the actor and critic respectively.
The combined algorithm optimizes the actor and critic parameters
with separate modules that realize the fixed point method of
step-size estimation (separate objects, as we would say in terms
of object-oriented programming). Below, the generic terms of
Section 4 are translated to the components of the ac&er algorithm.
For the actor step-size optimization:
– ξ translates into the sequence of data that is required to

computeφr
i .

– the vector that undergoes optimization is the actor parameter,
θ ,

– its fixed value will be denoted by θ∗,
– g(θ, ξ) represents −φr

i (θ, υ); the minus results from the
fact, that originally the fixed point method was meant for

minimization while here the direction of optimization is
opposite,

– g(θ∗, ξ) represents −φr
i (θ

∗, υ).

For the critic step-size estimation we have:

– as previously, ξ translates into the sequence of data that is
required to compute ψ r

i .
– the vector being optimized is now the critic parameter, υ ,
– its fixed value will be denoted by υ∗,
– g(θ, ξ) represents −ψ r

i (θ, υ); notice that now θ in the first
term corresponds to υ in the second while θ in the second is
only one of the entities that define this random vector,

– g(θ∗, ξ) represents −ψ r
i (θ, υ

∗).

The above explanation suffices for straightforward combination of
ac&er and the fixed point method of Section 4. This combination
may be further enhanced by addressing the issues of overtraining,
wrong fixed point initialization, and mutual adjustments of the
actor and critic.
Overtraining. In general, amodel is overtrainedwhen it fits the data
very well, but because the data is not sufficiently representative,
the model does not describe the actual system that has generated
the data. In the case of ac&er, the actor and critic may become
overtrainedwhen they are optimized on the basis of a short history
of experiences. For instance, suppose the experience contains
only several state–action pairs among which there are pairs with
the same state, and the ac&er has enough resources for full
optimization of the policy on the basis of these pairs. Then, itwould
readily make the better action in the same state infinitely more
probable than the worse one. Consequently, the resulting policy
would not try the worse actions at all which could lead to inability
to explore certain area of the action space.

A way to overcome the above difficulty is to introduce regular-
ization. Let

l : S × Rnθ → R+

be a loss function that is continuous and assigns, for each state, zero
to a bounded set of policy vectors that ensure exploration in a state,
and an increasing positive score (∈ R+) to the policy vectors with
growing distance from this set. Then, the policy vector adjustment
takes the form

θ := θ + βθ
φr

i (θ, υ)− ∇lθ (si, θ)

.

As a result, even if the unrepresentative data pushes the policy vec-
tor outside the feasible exploration region, the loss function pulls
it back.
Wrong fixed point initialization. In the initial period of the fixed
point method, the algorithm only collects data and estimates
∥Eg(θ, ξ)∥2 and E∥g(θ, ξ)∥2. It is assumed then that the g vectors
are independently sampled from the appropriate distribution. If
there are very few samples in the database, then this assumption
is obviously violated and the estimator of E∥g(θ, ξ)∥2 becomes
positively biased. As a result, the length of the estimation periods
gets smaller. In order to stabilize the discrepancy betweenG andG∗

for too short estimation periods, the step-sizes are being increased.
This may lead to oscillations in the early stages of learning process.

A simpleway to overcome this problem is to delay learning until
a certain number of samples are collected in the database. To this
end, we use the ν function to regulate the intensity of replaying
experience, of the form

ν(t) =


0 ⇐⇒ t ≤ min_capacity
comp_steps ⇐⇒ t > min_capacity (18)

for min_capacity > comp_steps > 0, i.e., v(t) is a piecewise con-
stant function that triggers the intensity of replaying experience
given by comp_steps only after a certain time has elapsed denoted
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Algorithm 4. Actor–Critic with experience replay and step-size
estimation based on the fixed point method.

1: t := 1, Initialize θ and υ
2: Actor.FP_INITIALIZE(θ0)
3: Critic.FP_INITIALIZE(υ0)
4: Draw and execute an action, at ∼ π(·; st , θ)
5: Assign πt = π(at; st , θ)
6: Repeat ν(t) times, begin
7: Draw i ∈ {t − N, t − N + 2, . . . , t − 1}
8: Adjust θ along an estimator of φ(si, θ, υ):
9: Actor.FP_LOOP


−φr

i (θ
∗, υ)+ ∇θ∗ l(si, θ∗),

−φr
i (θ, υ)+ ∇θ l(si, θ)


10: Adjust υ along an estimator of ψ(si, θ, υ):
11: Critic.FP_LOOP


−ψ r

i (θ, υ
∗),−ψ r

i (θ, υ)


12: End
13: Register the tuple ⟨st , at , πt , rt , st+1⟩ in the database
14: Make sure only N most recent tuples remain in the

database
15: Assign t := t + 1 and repeat from Line 4

by min_capacity. While comp_steps is defined by available compu-
tation power, min_capacity should be set to exclude the use of too
large computational power to optimize the actor and critic vectors
on the basis of too few data samples.
Mutual adjustments of the actor and critic. The fixed point method
of step-size estimation is originally designed as a tool for
stochastic optimization. Actor–critic with experience replay may
be understood as an algorithm of that type in which the actor
parameter, θ , is optimized to adapt it to the current critic, and the
critic parameter, υ , is optimized to adapt it to the current actor.
In both the cases, the ultimate goal of adaptation is constantly
changing or running away. Consequently, the step-sizes should
be estimated taking into account larger distance to the goal than
currently perceived. The discrepancy betweenG andG∗ in the fixed
point method should be thus stabilized at a relatively higher level
in ac&er as compared to stationary stochastic optimization. It is
also inherent in Actor–Critics that the critic should adapt to the
actor faster than vice versa (see e.g., Bhatnagar et al., 2009; Konda
& Tsitsiklis, 2003).

The above remarks translate into the following guideline for the
use of the fixed point method in ac&er: the discrepancies between
G and G∗, regulated by the α0 parameter, should be stabilized
at relatively higher level for the critic than for the actor, and in
both cases should be larger than optimal for stationary stochastic
optimization.

The combined algorithm is presented in Algorithm 4. It defines
the agent–environment interaction and the improvement direc-
tions for the actor and the critic. Their step-sizes and parameters
are adjusted with the two fixed-point modules.

6. Experimental study

In the previous section, a reinforcement learning algorithm
is introduced that combines experience replay with autonomous
step-size estimation. In this section, it is confronted with two
simulated control problems in multidimensional continuous
spaces. The problems are selected to have general characteristics
and the level of complexity corresponding to real-life robotic
applications. The tasks analyzed are: (1) point reaching movement
of octopus arm, and (2) cyclic running motion of half-cheetah.

6.1. Octopus arm

Octopus is well-known for exhibiting a high level of flexibility
in controlling arm movements. The highly developed limbs

of octopus make it capable of bending, stretching, shortening
and twisting its arm at any point and in any direction with
virtually unlimited degrees of freedom. Artificial octopus arm has
found its niche in continuum robotics to replace conventional
serial manipulators with smooth, continuous and flexible links
(McMahan et al., 2006). However, their use is severely limited
by existing motion planning and control algorithms. Classical
approaches of controlling redundant manipulators by applying
functional constraints to the additional degrees of freedom with
null-space projection do not scale to continuum robots due to
added computational complexity (Chiaverini, Oriolo, & Walker,
2008). While the theoretical foundation of continuum kinematics
is in its nascent stages, learning based approaches provide
an interesting alternative to control such robots. To this end,
Engel, Szabó, and Volkinshtein (2005) used the Gaussian process
temporal difference based reinforcement learning algorithm to
successfully demonstrate various learning tasks of a simulated
octopus arm model. Because the original state and action space
of an octopus arm has huge number of dimensions, it often serves
as a test bed for solutions to the problem of dimensionality in RL
(Koutnik, Gomez, & Schmidhuber, 2010;Woolley & Stanley, 2010).
Here the proposed reinforcement learning algorithm is tested for
solving the task of reaching a given goal by an octopus arm;
the state and action spaces are reduced but still rich enough to
represent current position and dynamics of the arm.

6.1.1. Control problem
We are interested in learning a reactive control policy for the

octopus arm to reach an arbitrary goal point starting from some
random position. The octopus arm is represented by a planar
simulator model composed of 10 quadrilateral compartments
with each segment containing a longitudinal or a transverse
muscle, as described by Yekutieli et al. (2005). The mass of each
compartment is distributed in its four corners as point masses
which are connected by linear damped springs representing
muscles. Each compartment follows the muscular hydrostat
principle of maintaining a constant volume (area in this case)
assuming themuscles to be incompressible. The activation pattern
in muscles acts as input to the model and the resulting position
of point masses is obtained on the basis of the net force acting
on the arm. The forces modeled in the simulation are of four
types: (1) internal force generated by muscles, (2) vertical force
due to gravity and buoyancy of arm in seawater, (3) external
force produced by water drag, and (4) constraint force induced
by change in pressure to keep the area of each compartment
constant. Moreover, the base is non-rotating in the model, i.e.,
the first spring is fixed to the ground. The planar dynamic model
of the octopus arm provides a trade-off between its fidelity and
real-time processing overheads. The model is simulated with the
use of software made available for 2006 RL competition (Octopus-
sources, 2006) originally written in Java and rewritten for the
experiments presented here to C#. The simulator worked in its
standard setting with 10 compartments, fixed base, each muscle
1 unit long, and action duration 0.1 s.

We now define the state and action spaces along with the
associated reward function to formulate the control problem of
octopus arm as MDP for reinforcement learning.
State space. In this study, we define three moving frames in polar
coordinates that are used to localize the octopus arm movement
towards its goal. The first frame (r1, φ1) is located at the center of
the point masses of all the quadrilateral compartments, the second
one (r2, φ2) is located at the center of the point masses of last 5
quadrilateral compartments, and the third one (r3, φ3) is located at
the center ofmass of the last compartment. The first two frames are
movablewith respect to the arm as theymay ormay not be located
inside the model depending upon its configuration (see Fig. 2).
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Fig. 2. Simulated octopus arm model with geometric description.

Table 1
State variables of octopus arm.

s0 = (rg − 10)/3 s4 = ṙ1/0.01 s8 = (r3 − rg )/3
s1 = φg s5 = φ̇1/0.01 s9 = φ3 − φg
s2 = (r1 − rg )/3 s6 = (r2 − rg )/3 s10 = sign(r3 − rg )
s3 = φ1 − φg s7 = φ2 − φg s11 = sign(φ3 − φg )

Based on the three frames and the goal frame (rg , φg), the state
space of our model consists of 12 state variables given in Table 1.
Each state variable is normalized to roughly cover the interval
[−1, 1]. Majority of the variables define the position of three
frames with reference to the goal frame. Additionally, variables s4
and s5 express velocity of the center of mass, and discrete variables
s10 and s11 describe whether the last compartment is ‘in front
of’ or ‘behind’ the target. While these variables are redundant in
defining arm configuration, they are quite useful inputs to the
control policy.

Action space. The action space consists of a set of 6 actions each of
which pre-defines the activation level in the arm’smuscles, as used
in Engel et al. (2005). The action space is shown in Fig. 3.

Episodes and reward function. The learning task is carried out
in episodes. An episode terminates with success when the last
compartment touches the goal (which is transparent for other
compartments). If this goal is not reached within 500 steps, the
episode terminates. A new target position is sampled in the
beginning of every episode within the area described by a circular
region:

rg ∈ (7.5, 9.5)
φg ∈ (−π/4, π/4).

The position of the arm is initialized such that it is set in its default
position, an action is chosen randomly from the set {Action 1,
Action 2}, and it is applied to the arm for a number of steps chosen
randomly from the set {1, . . . , 100}.

The reward function is defined such that the controller is
penalized with a negative score of −1 for all the learning steps
in which the goal has not been reached. Moreover, the arm is
rewarded for moving towards the goal in proportion to its speed.
The reward function is given by:

rt =


dt − dt+1 − 1 if the target is not reached at t + 1
dt if the target is reached at t + 1. (19)

The above term dt denotes Euclidean distance between the tip of
the arm and the goal positionmeasured at instant t . The goal of the
octopus arm is to maximize the reward function by reaching the
goal position as quickly as possible. The total reward to be obtained
within an episode is therefore equal to the difference between the
initial distance of the last compartment to the goal and the number
of steps in which the goal is reached.

6.1.2. Actor and critic structure
The actor and critic are based on feedforward neural networks,

namely 2-layer perceptrons with sigmoidal neurons in their
hidden layers and linear neurons in their output layers. The input
of both the networks is the scaled state of the octopus arm. All
neurons in the networks have a constant input (bias). The initial
weights in the hidden layers are drawn randomly from the normal
distribution N(0, 1) and weights of the output layers are initially
set to zero.

The actor is the combination of a neural network and a genera-
tor of discrete numbers. The network has NA neurons in its hidden
layer and 6 neurons in the output layer corresponding to the size of
the discrete action set. Given state s and the observed neural net-
work outputs

µi(s, θ), i = 1 . . . 6,

the likelihood function for choosing a discrete action, Action i, is
given by:

P(Action i|s) =
exp(µi(s, θ)/10)
6

j=1
exp(µj(s, θ)/10)

. (20)

The exploration takes place as each action has a non-zero proba-
bility. This is ensured by the penalty function of the form

l(s, θ) =

6
i=1

max{0, |µi(s, θ)| − 20}2.

As a result, the policy is not penalized for the network’s outputs in
the range [−20, 20], which means that the best action is not more
than e4 ≈ 54 times more probable than the worst one.

The critic is a 2-layer perceptron with NC neurons in its hidden
layer and one neuron in the output layer.

6.1.3. Experiments and results
The experiments of the learning control problem of an

octopus arm with the proposed algorithm are now presented.
The parameter setting of the actor–critic reinforcement learning
algorithm is as follows: NA = 50,NC = 100, γ = 0.98, b =

2, α = γ = 0.98, and ρ = λ = 0.8. The experience database
contained M = 104 events. The ν function took the form (18)
with min_capacity = 1000 and comp_steps = 100. The fixed point
algorithm parameters were: α1 = 0.9, α2 = 0.5, α0 = 0.2 for the
actor and α0 = 0.3 for the critic.

Fig. 4 shows different stages of the octopus arm in reaching the
desired goal. Figs. 5–9 present the result of experiments performed
with the above parameter setting. The actor–critic with experience
replay and various constant step-sizes is compared against those
estimated by the fixed point method. Fig. 5 presents learning
curves (average rewards vs. episode number), Fig. 6 presents
efficiency (ratio of runs in which the goal was reached), Figs. 7 and
8present average duration of episodes, and Fig. 9 presents the step-
sizes estimated by the fixed point method.

What is not demonstrated in the figures is that the learning
process is unstable for constant step-sizes greater or equal to
0.1 for both the actor and the critic. For βθ = βυ = 10−2,
the algorithm does not converge and produces poor performance.
Smaller step-sizes lead to better performance but for βθ ≤ 10−4

or βυ ≤ 10−4 the learning process becomes very slow. The
fixed point method of adjusting step-sizes enables at least as good
performance of the learning algorithm, at any stage of its operation,
as given by any constant step-size. The training is completed (no
further improvement is observed) after 240 episodes which is
equivalent to 80 min of Octopus time.
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Fig. 3. Action set. The activated muscles are indicated by thick blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Simulated goal reaching movement of octopus arm. Left: Arm position in the start of episode.Middle: Arm position trying to reach the goal. Right: Arm position when
reached the goal. After learning, the arm reaches the goal in about 100 steps with maximum efficiency.

Fig. 5. Octopus arm: Average rewards vs. episode no. for actor–critic with
experience replay and constant step-sizes against those estimatedby the fixedpoint
method. Each curve averages 10 runs.

Fig. 9 shows the evolution of step-sizes driven by the fixed point
method. They are averaged over runs and episodes according to the
formula

β̄ = exp


1
N

N
i

lnβi


, (21)

where N is the number of registered step-sizes. This way of
averaging is better here than the normal one because it does not
underweight very small step-sizes. It is seen that the actor step-
size starts from a large initial value and then gradually decreases.
The critic step-size initially decreases to a rather small value
and then, after about 100 episodes, almost remains the same.
This suggests that slowing down of the actor learning does not
necessarily corresponds to slowing down of the critic learning.

6.2. Half-cheetah

Running in biological systems has largely inspired the develop-
ment of legged robotics. Starting from the seminal spring-loaded
hopping robots to the state-of-the-art quadrupeds and bipedswith
compliant legs, a number of prototypes have been proposed to
mimic versatility, speed and robustness in natural running. The
dramatic progress is hindered by the lack of ability in robots to ac-
quire these skills by online learning. In this section, we apply our
proposed algorithm on a planar model of a large cat, called half-
cheetah, to learn the complex skill of running.

Fig. 6. Octopus arm: Efficiency vs. episode no. for actor–critic with experience
replay, step-sizes estimated by the fixed point method, and constant step-sizes.
Each curve averages 10 runs.

Fig. 7. Octopus arm: Duration in steps vs. episode no. for actor–critic with
experience replay, step-sizes estimated by the fixed point method, and constant
step-sizes. Each curve averages 10 runs.

6.2.1. Control problem
Half-Cheetah is a 6 degrees of freedom planar robot introduced

inWawrzyński (2009). It is composed of nine links, eight joints and
two paws (see Fig. 10). The angles of the fourth and the fifth joint
are fixed while others are controllable. The torque applied at each



10 P. Wawrzyński, A.K. Tanwani / Neural Networks ( ) –

Fig. 8. Octopus arm: Duration in steps vs. episode no. for actor–critic with expe-
rience replay and step-sizes estimated by the fixed point method. The one-sigma
limits are calculated to show run-to-run variability of trial averages .

Fig. 9. Octopus arm: The fixed point method of step-size estimation vs. episode no.
for actor–critic with experience replay. Each curve averages 10 runs.

joint acts as input to themodel and the next position of the robot is
obtained as output by integrating its dynamic equations of motion.

The control problem is to learn a reactive policy under the
MDP framework to make half-cheetah run as fast as possible. State
of half-cheetah is defined by 31 variables. The action space is
continuous, contrary to that of octopus arm, with 6 dimensions
each corresponding to one actuated joint independently. Learning
is divided into episodes with an average duration of 250 steps, for
0.02 s duration of each step. The robot is mainly rewarded for its
speed of moving forward. Other components are minor penalties
for violating torque limits, joint limits, notmoving the trunk in idle
position and touching the groundwith other body parts than paws.
In this study, we use the simulator of half-cheetah, as reported in
Wawrzyński (2009), with same experimental settings including its
dynamics, state and action definition, and reward function.

6.2.2. Actor and critic structure
The actor, π , is composed of two parts: a neural network and

a normal distribution. The input of the network is the state of
half-cheetah. The network has a hidden layer with NA sigmoidal
neurons and six linear output neurons corresponding to the
dimensionality of the action space. The output, µ(s; θ), becomes
a mean value of the normal distribution with covariance matrix
equal to Iσ 2. The distribution generates actions. Because each
component of the action is projected on the interval [−30, 30], the
penalty function keeps each network output in this interval for a
given state. It is of the form

l(s, θ) =

6
i=1

10−3 max{0, |µi(s, θ)| − 30}2.

The critic is a neural network of the same structure as the
actor network with NC neurons in its hidden layer. The initial

weights in the hidden layers are drawn randomly from the normal
distribution N(0, 1) and weights of the output layers are initially
set to zero.

6.2.3. Experiments and results
The experiments to make half-cheetah run are configured with

following parameters: NA = 160,NC = 160, σ = 5, γ = 0.99,
b = 2, α = γ = 0.99, ρ = λ = 0.9. The experience database
contained M = 105 events. The ν function took the form (18)
with min_capacity = 100 and comp_steps = 30. The fixed point
algorithm parameters were kept same as for octopus arm with:
α1 = 0.9, α2 = 0.5, α0 = 0.2 for the actor and α0 = 0.3 for
the critic.

Fig. 10 shows various stages of the learned running gait of half-
cheetah. The cat robot starts from a standing position and first
learns tomove forwardwith the added noise in the control system.
The awkward walk transforms into a trot gait which at the end
of training becomes a smooth nimble run. The use of experience
replay speeds up the learning process of running in proportion to
the intensity of replaying computations.

In this study, we are interested in analyzing the effect of
the proposed fixed-point method of step-size estimation on the
learned policy. To this end, Figs. 11 and 12 compare the learning
curve of the adaptive step-size estimation algorithm with the
ones obtained by setting various constant step-sizes. Among the
learning curves with constant step-sizes, the learning algorithm
produces optimum results for βθ = βυ = 10−5. For larger
values, the policy evolves with a reasonable speed in the initial
period but the ultimate performance is worse. Smaller step-
sizes slow down the learning speed significantly. The fixed point
method of estimating the step-sizes makes the learning algorithm
perform better at every stage of the learning process than with
any manually selected step-sizes. The algorithm required 3500
episodes (about 5 h of half-cheetah time) to learn to receive
average reward of 6, which corresponds to a really nimble run.

Fig. 13 presents evolution of step-sizes driven by the fixed point
method. They are averaged over runs and episodes according to
formula (21). It is seen that the actor and critic step-sizes start
descending from the same value and then gradually converge to
about 5.10−6 and 10−6 respectively.

6.3. Discussion

The purpose of this experimental study is to evaluate the feasi-
bility of autonomously determining the step-sizes for actor–critic
class of reinforcement learning algorithmswith experience replay.
The results are promising: the augmented algorithmhas been used
to find control policies for two challenging problems similar to
those encountered in robotics. The algorithm gave at least as good
performance at any stage of the learning process as Actor–Critic
with experience replay and constant step-sizes.

In all the experiments, the step-sizes of the fixed point method
were initialized blindly, with a value of 1.0 (Algorithm 3, Line 8).
As experiments with constant step-sizes showed, the value of 1.0
was very large and surely caused instability of the learning, which
was identified by the algorithm (Line 19), and the step-sizes were
halved (Line 20) until they ensured normal learning. Therefore,
despite their large initial value, improper for the problems at
hand, the step-sizes are always smaller than 1.0 in Figs. 9 and
13. Further, the step-sizes were autonomously adjusted with time
(Algorithm 3, Line 25), which usually (but not always) meant their
slow decrease.

The fixed point method of estimating step-sizes gave at least
as good performance as the manually defined constant step-
sizes used in the experiments. We argue that constant step-
sizes generally do not ensure good performance as even their
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Fig. 10. Simulated run of Half-Cheetah. Left: Initial stance.Middle:Middle stance with feet in the air. Right: Landing stance. After learning, half-cheetah runs with a speed of
about 6.5 m/s.

Fig. 11. Half-Cheetah: Average rewards vs. episode no. for actor–critic with expe-
rience replay and constant step-sizes against those estimated by the fixed point
method. Each curve averages 10 runs .

Fig. 12. Half-Cheetah: Average rewards vs. episode no. for actor–critic with expe-
rience replay and step-sizes estimated by the fixed point method. The one-sigma
limits are calculated to show run-to-run variability of trial averages .

Fig. 13. Half-Cheetah: The fixed point method of step-size estimation vs. episode
no. for actor–critic with experience replay. Each curve averages 10 runs.

handcrafted values yield slow learning in the early stages and
fluctuations in the final stages. The fixed point method estimates
large step-sizes initially and gradually decreases them during
the course of learning. However, it has been observed in our
supplementary experiments that the critic step-sizes that were
twice larger than estimated by the fixed-point algorithm led to
even better performance. Step-size estimation for the critic is an
especially difficult problem as the critic learns mainly on the basis
of values that it produces alone, thereby, going beyond themodel of
stochastic optimization for which the fixed-point algorithm along
with most other methods of step-size estimation is designed. Still,
the results presented here suggest the correctness of the principles
that govern the fixed-point method.

Step-sizes are not the only input parameters of the learning
algorithm. The rest of the parameters, however, either have the
same values for both tasks or can be assigned by the experimenters
based on their experience. The first category encompasses the
parameters of the fixed-point method and parameter b of the
randomized-truncated estimators (Eqs. (8) and (9)). The second
category includes the parameters whose values are in principle
problem-dependent, but the learning is not very sensitive to them
andnotmuch experience of an experimenter is required to set their
proper values. Those are: (1) the sizes of the neural networks, NA
and NC—the more difficult the control problem gets, the larger is
the size of required networks, (2) the discount factor, γ , and the
λ parameter—the more farsighted the control policy is required
to be, the larger are the values of γ and λ, (3) the size, M , of the
database with experience—it should be sufficiently large for this
experience to be representative, (4) the intensity of experience
replay, comp_steps, results from the available computer power.

In comparison to the parameters discussed above, the step-
sizes have different nature: (1) the learning is quite sensitive to
them, (2) their proper values differ orders of magnitude from one
task to another, (3) for the same task they may differ substantially
between stages of the learning. Their on-line estimation is
therefore crucial for autonomy of learning.

7. Conclusions and future work

In this paper, an actor–critic reinforcement learning algorithm
was introduced that combines experience replay (Wawrzyński,
2009) with the fixed point method of step-size estimation, im-
proved upon its version presented in Wawrzyński (2010). Poten-
tially problematic issues associated with this combination were
addressed, namely overtraining, wrong fixed point initialization,
and mutual adjustment of the actor and critic. The experimen-
tal study on octopus arm and half-cheetah revealed that the al-
gorithm learned control policies in multidimensional continuous
space within a short time. It is also autonomous in the sense that it
achieved its goal essentially within a single run, without auxiliary
experiments aiming at manual tuning of the problematic step-size
parameters.

As the proposed approach has been designed for robotic
applications, we plan its evaluation on a real humanoid walking
robot. While the fixed point method of step-size estimation is
justified by a simplifiedmodel and empirical performance, there is
room for its further development and analysis of its convergence.
This method has been applied here for optimization of the actor
and critic step-sizes separately, while the learning of actor and of
critic are coupled processes. The question whether the principles
underlying the fixed point method can be formally extended to
such coupling is another interesting subject of further research.
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