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RILaaS: Robot Inference and Learning as a Service
Ajay Kumar Tanwani, Raghav Anand, Joseph E. Gonzalez, Ken Goldberg

Abstract—Programming robots is complicated due to the lack
of ‘plug-and-play’ modules for skill acquisition. Virtualizing
deployment of deep learning models can facilitate large-scale
use/re-use of off-the-shelf functional behaviors. Deploying deep
learning models on robots entails real-time, accurate and re-
liable inference service under varying query load. This paper
introduces a novel Robot-Inference-and-Learning-as-a-Service
(RILaaS) platform for low-latency and secure inference serving
of deep models that can be deployed on robots. Unique features
of RILaaS include: 1) low-latency and reliable serving with gRPC
under dynamic loads by distributing queries over multiple servers
on Edge and Cloud, 2) SSH based authentication coupled with
SSL/TLS based encryption for security and privacy of the data,
and 3) front-end REST API for sharing, monitoring and visu-
alizing performance metrics of the available models. We report
experiments to evaluate the RILaaS platform under varying loads
of batch size, number of robots, and various model placement
hosts on Cloud, Edge, and Fog for providing benchmark appli-
cations of object recognition and grasp planning as a service. We
address the complexity of load balancing with a reinforcement
learning algorithm that optimizes simulated profiles of networked
robots; outperforming several baselines including round robin,
least connections, and least model time with 68.30% and 14.04%
decrease in round-trip latency time across models compared to
the worst and the next best baseline respectively. Details and
updates are available at: https://sites.google.com/view/rilaas

Index Terms—Networked Robots, Transfer Learning, Indus-
trial Robots, Behaviour-Based Systems, Distributed Systems

I. INTRODUCTION

ROBOT programming has evolved from low level coding
to more intuitive methods. Common ways of program-

ming robots include use of a teaching pendant to record and
playback a set of via-points, offline programming with the
use of a simulator, programming by demonstration such as
kinesthetic teaching, and/or programming by exploration for
trial and error learning of the desired task. Despite the variety
of interfaces, teaching a new task to a robot requires skilled
personnel for data collection, labeling and/or learning a control
policy from hundreds of hours of robot training [1]. Instead
of retraining a skill for every new situation, we advocate
the need of a programming-by-abstraction approach where
high-level skills such as grasping and object recognition etc.
can be acquired in a ‘plug-and-play’ manner to facilitate
programming of new skills.

Recent advancements in deep learning have led to a rise
of robotic applications that rely on computationally expensive
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Fig. 1: RILaaS uses a hierarchy of resources in the Cloud-Edge continuum
to distribute inference/prediction serving of deep learning models such as
grasp planning and object recognition on a fleet of robots. Users can manage
robots and models with a front-end API that interacts with the inference loop
through a metrics server, authorization cache, and a Docker model repository.

models such as deep neural networks for perception, planning
and control. Typical usage of a deep learning model involves:
training, adaptation and/or inference. The training stage
involves estimation of model parameters on large scale data,
adaptation is the process of transferring/fine-tuning the model
to a new domain/environment, while inference requires pre-
dicting the model output for a given input. While training and
adaptation of a deep model is computationally and resource
intensive, inference decouples model from applications and
must be done in real-time to meet the performance require-
ments of the application. As an example, training a deep
object recognition model on ImageNet-1k may last for days,
adaptation may take hours, but the inference time is often less
than 100 milliseconds.

Robots are increasingly linked to the network and thus
not limited by the onboard resources for compute, storage
and networking with Cloud and Fog Robotics [2], [3]. By
offloading the computational and storage requirements over
the network, the robots can share training, adaptation and
inference of deep learning models and reduce the burden
of collecting and labelling massive data for programming a
separate model for each robot. Once trained, the models can
be deployed to an inference serving system to meet the per-
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formance requirements of the application such as bandwidth,
latency, accuracy and so on. To our surprise, there is very
little research on how to use/re-use and deploy such models
once they are trained. The focus of this paper is on scalable
inference serving of deep models on networked robots.

In this paper, we introduce a novel Robot-Inference-and-
Learning-as-a-Service (RILaaS) platform to meet the service
level objectives in inference serving of deep models on robots.
RILaaS abstracts away applications from the training phase
with virtualized computing and storage of models and datasets,
thereby, removing hardware and software dependencies on
custom middleware. It allows users to easily upload, test,
share, monitor and deploy trained models on robots for
querying the service ubiquitously. The service optimizes for
low latency and scalable inference across a fleet of robots by
distributing queries over Cloud and Edge using an adaptive
load balancing strategy (see Fig. 1). We observe that using
reinforcement learning to optimize the load profiles of net-
worked robots outperforms several baselines including round
robin, least connections, and least model time. We show the
application of RILaaS to deep object recognition and grasp
planning, where the robots send RGB and/or depth images of
the environment over a wireless network as input, and retrieve
the object locations and/or grasp configurations as output. We
investigate the performance of RILaaS platform under varying
batch sizes, number of robots, and simulated dynamic loads for
vision-based decluttering, where a mobile robot grasps objects
from a cluttered floor and sorts them into respective bins.

A. Contributions

This paper makes three contributions:
1) We present RILaaS: a novel user-based low-latency infer-

ence serving platform to facilitate large-scale use/re-use
of deep models for robot programming.

2) We provide examples of deep object recognition and
grasp planning as a service with RILaaS and benchmark
their performance with varying number of robots, batch
sizes and dynamic loads.

3) We optimize the round-trip latency times for scalable
inference serving by distributing queries over Cloud and
Edge servers with a reinforcement learning algorithm that
outperforms several baselines under simulated dynamic
loads by at least 14.04% reduction in round-trip latency
time compared to the next best least-connections strategy.

II. RELATED WORK

A. Cloud and Fog Robotics

Cloud Robotics provides on-demand availability of con-
figurable resources to support robots’ operations [2]. The
centralized Cloud approach alone often limits the latency and
throughput of data than deemed feasible for many robotics
applications. Fog Robotics distributes the resource usage be-
tween the Cloud and the Edge in a federated manner to
mitigate the latency, security/privacy, and network connectivity
issues with the remote Cloud data centers [4], [3], [5]. Popular
cloud robotics platforms include RoboEarth [6] – a world-wide

web style database to store knowledge generated by humans
and robots accessed via Rapyuta platform; KnowRob [7] – a
knowledge processing system for grounding the knowledge
on a robot; RoboBrain [8] – a large scale computational
system that learns from publicly available resources over
internet; cloud-based motion planners [9]; rosbridge [10] –
a communication package between the robot and the Robot
Operating System (ROS) over Cloud; while Dex-Net as a
Service (DNaaS) [11] are recent efforts to provide Cloud-based
services for analytical grasp planning.

To the best of our knowledge, RILaaS is the first user-based
data-driven general purpose inference serving platform for
programming robots. We provide grasp planning and single-
shot object recognition services as an example where the
robots send RGB and/or depth images of the environment
and retrieve the recognized objects and the grasp locations
for robotic manipulation.

B. Inference Serving

Inference serving is emerging as an important part of a
machine learning pipeline for deploying deep models. The
growing demand of machine learning based services such as
image recognition, speech synthesis, recommendation systems
etc. is resulting in tighter latency requirements and more con-
gested networks. Large tech companies have built their private
model serving infrastructure to handle scaling, performance,
and life cycle management in production, however, their
adoption in a wider machine learning and robotics community
is rather limited.

A simple way to deploy a trained model is to make a REST
API using Flask. Although simple and quick, it often causes
scale, performance, and model life cycle management issues in
production. Tensorflow-serving uses SavedModels to package
the trained models for scaling and sharing of the deployed
models [12]. The serving, however, does not support arbitrary
pre-processing and post-processing of the data which limits
a range of applications. Clipper supports a wide variety of
frameworks including Caffe, Tensorflow and Scikit-learn for
inference serving in the Cloud. Additionally, it uses caching
and adaptive batching to improve the inference latency and
throughput [13]. InferLine combines a planner and a reactive
controller to continuously monitor and optimize the latency
objectives of the application [14]. Rafiki optimizes for model
accuracy with a reinforcement learning algorithm subject to
service level latency constraints [15]. INFaaS automatically
navigates the decision space on behalf of users to meet user-
specified objectives [16]. Recently, a number of companies
have entered the model serving space with Amazon Apache
MXNet, Nvidia TensorRT, Microsoft ONNX and Intel Open-
Vino to satisfy the growing application demands. All these
services are typically optimized to serve specific kinds of
models in the Cloud only. Moreover, creation or updating of
the models at the back end is manual and cumbersome. In
comparison to these services, RILaaS allows users to upload
trained deep models, share with other users and/or make them
publicly available for others to test models with custom data
and easily deploy on new robots for querying the trained
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models. It distributes the queries over Cloud and Edge to
satisfy more stringent service level objectives than possible
with inference serving in the Cloud only.

C. Inference Optimization

Deploying deep learning models is not just about setting up
the web server API, but ensuring that the service is scalable
and the requests are optimized for service level objectives.
The Cloud provides auto-scalable resources for compute and
storage, whereas resources at the Edge of the network are
limited. Edge and Fog Computing brings Cloud-inspired com-
puting, storage, and networking closer to the robot where the
data is produced [17], [18]. Quality of service provisioning
depends upon a number of factors such as communication
latency, energy constraints, durability, size of the data, model
placement over Cloud and/or Edge, computation times for
learning and inference of the deep models, etc [19]. Nassar and
Yilmaz [20] and Baek et al. [21] allocate resources in the Fog
network with a reinforcement learning based load balancing
algorithm. Chinchali et al. use a deep reinforcement learning
strategy to offload robot sensing tasks over the network [22].

RILaaS takes a distributed approach to inference serving
where a load-balancer receives inference requests from nearby
robots/clients at the Edge and learns to decide whether to
process the requests on Cloud or Edge servers based on their
resource consumption. We show its application to vision-based
grasping and object recognition and investigate the inference
scaling problem by simulating increasing number of requests
in the network.

III. PROBLEM FORMULATION AND CHALLENGES

Consider a multi-agent setting of M robots 〈r1 . . . rM 〉
each having access to a set of trained models or policies
〈π1 . . . πD〉 that are deployed on a set of N servers. Each
model may be deployed on one or more servers, and the
location of each server is fixed either on Cloud, Edge or
anywhere along the continuum. The m-th robot observes the
state of the environment as {ξ(m)

t }TB
t=1 in a mini-batch of size

TB , sends the request asynchronously to the inference service
and receives the response {y(m)

t }TB
t=1. The job of the inference

service is to compute the responses {y(m)
t = πd(ξ

(m)
t )}TB

t=1 for
the requested d-th model such that the round-trip latency time
t(rtt) is optimized in communication with the set of robots,
while preserving the privacy and security of the data. Note that
we do not consider the transfer problem of adapting the model
output to new environments in this work, and only address the
scalability issues in inference serving of deep models on a fleet
of robots.

To this end, we introduce a novel user-based inference
serving platform for deploying deep learning models on robots,
and apply reinforcement learning for optimizing the round-
trip latency times under dynamic loads. Next, we describe the
specific challenges in developing the general purpose inference
serving platform and discuss the RILaaS methodology to
address the outlined issues.

Model Support: Prominent machine learning frameworks
such as PyTorch, Tensorflow, Spark, Caffe are widely used

for training and adaptation of deep models. Deploying these
multiple frameworks on a robot or a set of inference servers
is complex because of conflicting dependencies between each
framework. RILaaS accepts any arbitrary model for deploy-
ment by using Docker containers to allow each framework
to exist independently of the other. Each container can be
customized to the requirements of a particular framework.
The containers accept inputs of Map<name, numeric
array> and return outputs of the same form, where the map
function adapts the model inputs and outputs to the RILaaS
format.

Rapidly Deployable: RILaaS abstracts away applications
from models to facilitate ease of deployment on custom
hardware with varying specifications. It only requires the
public SSH key of the robot for authenticating and subscribing
to the required models, after which the robot can readily access
model outputs over a network call.

Security and Privacy: Inference serving by transmitting
sensitive data over untrusted wireless networks (such as images
of private locations) is vulnerable to data infiltration and cyber
attacks. Additionally, targeted Denial of Service (DoS) attacks
can be a bottleneck to meet the bandwidth requirements of
time-sensitive applications [23]. Hosting models on the Edge
of the network can keep data private and the network secure,
but it comes at the cost of developing and maintaining a
heterogeneous Edge infrastructure. RILaaS uses a Fog robotics
approach to place models on the Cloud and the Edge servers
depending upon the security requirements specified by the
user. This allows access to the auto-scalable compute and
storage capacity of the Cloud for low-sensitivity models while
using secure but less powerful Edge infrastructure for private
data. Moreover, RILaaS’s front end allows easy management
of access controls on a per-robot per-model basis.

Scalable Workloads: Robots may have to trade-off between
doing fast inference on a remote server using hardware ac-
celerators such as a GPU while incurring additional network
overhead or doing slow inference locally. Latency times need
be optimized to deal with dynamic application dependent
workloads. RILaaS optimizes the inference serving latency
for each individual model by using reinforcement learning
to distribute queries over the Cloud and the Edge servers
according to their resource consumption.

Performance Monitoring: Monitoring the inference ser-
vice is useful to evaluate the empirical accuracy and latency
characteristics in comparison to the service level objectives of
the application. RILaaS allows users to specify and log metrics
for each model and each robot over a front-end.

IV. RILAAS ARCHITECTURE

RILaaS is divided into four modules: 1) Front-end, 2)
Management Server, 3) Inference Server and 4) Request
Interceptor. The front-end provides a simple interface to
upload trained models and deploy them on robots. The man-
agement server is responsible for storing the authorization
policies and deploying the containerized models on requested
servers. The inference server computes the response of the
incoming queries using specified models. The request inter-
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Fig. 2: Front-end API snapshots (not shown to scale): (top)
Users can upload, share and visualize models and datasets,
(botom-left) interface to upload new models and set access
control policies, (bottom-right) interface to deploy available
models on robots.

ceptor authorizes the use of specified models, while the load-
balancer hosted on the request interceptor learns to distribute
queries over multiple inference servers. Additionally, the mon-
itoring server collects metrics about the model and the robot
performance. The user first uploads or chooses a publicly
shared model over the front-end where it is containerized
and deployed on the inference server. Robots are added by
specifying their public SSH key and subscribing to the desired
models. Robots can then query the deployed models over
the network using a minimalist client library. The monitoring
server runs in the background to log the desired metrics for
visualization via the front-end. The overall architecture is
summarized in Fig. 1.

A. User End: Front-End and Management Server

RILaaS provides a user-facing REST API that interacts with
the Django management server to create, view and update
models, datasets, robots and metrics (see Fig. 2 for front-
end snapshots). The front-end is a user-based platform that
provisions for:

Model Creation: Users upload the model folder containing
the pre-trained model weights and specify the input, out-
put types and optional pre-processing and post-processing
modules. The management server containerizes the model
automatically and uploads the image in a docker repository
hosted on AWS. We package each model in a separate Docker
container to resolve system conflicts between models and
prevent over-utilization of system resources.

Model Sharing: Users can make their models private,
public or share with other users on the platform to facilitate
re-usability of models across applications.

Robot Creation: Users deploy the uploaded models on
robot(s) by adding their public SSH key for authentication.
Note that all publicly available models are automatically made
available to any robot registered with the service.

Dataset Creation: The front-end allows users to upload test
datasets for querying the uploaded models and visualizing the
model outputs. The test datasets can similarly be made public
for other users to test the models. This allows users to ensure
the functioning of their deployed models before querying them
from the robot.

Metrics Viewer: A flexible query interface through
Prometheus allows users to view metrics about their mod-
el/robot such as requests sent/received and the round-trip com-
munication latency times. Additional end-points for metrics
can be added via a dedicated endpoint that is asynchronously
monitored by the management server.

B. Robot End: Request Interceptor and Inference Server
Request Interceptor receives the incoming requests from

the networked robots and distributes them to the inference
servers. The request interceptor may be deployed on the robot
itself or centrally at the Edge of the network for a fleet of
robots. Note that multiple request interceptors can also be
deployed for the same application. The request interceptor
is responsible for SSH based authentication of the robots
and authorizing access control for the models. Authentica-
tion and authorization policies prevent misuse of compute
resources by intruders. Authentication is done using JSON
Web Tokens (JWT) signed with private SSH key of the
robot, while authorization policies are stored in a database
in the management server. Naively fetching model access
policies from remote databases for every request can slow
down inference, thereby, these access policies are stored on
a local Redis cache to minimize network calls to a remote
database for each robot query. The cache is updated using an
event-triggered system that maintains the most recent version
of access control policies from the management server. The
request interceptor subsequently directs the authorized queries
to the inference servers using a user-specified load balancing
strategy to optimize the round-trip latency times.

Inference Servers deploy the containerized models on
provisioned servers to process the incoming requests. The
servers may be placed on Cloud, Edge and/or anywhere along
the continuum depending upon the application requirements.
Modular resource placement allows the robots to access re-
sources from the Edge and seamlessly switch to the Cloud
for scalability if Edge resources are not sufficient to meet
the service level objectives. Moreover, non-critical models can
also be rate limited on a per-robot basis in order to prevent DoS
attacks from occurring at the Edge and ensure high availability
of important models.

C. Inference Query Life Cycle
RILaaS abstracts away the hardware and software depen-

dencies required for inference of deep robot models. Once a
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Fig. 3: Inference optimization with adaptive load-balancing: A Q-Learning
algorithm adapts the distribution of the incoming requests from the robots
between the Cloud and the Edge resources to optimize the round-trip latency
time.

model has been deployed on the RILaaS platform, a robot
or a fleet of robots can readily access the deep models by
a simple network call after installing the minimalist RILaaS
client python package. As shown in the code snippet below, the
RobotClient object contains the necessary parameters for
authentication and authorization of the robot and the required
deep model. The robot specifies the target address of the
request interceptor, the model name and the model version for
inference, the private SSH key of the robot for inference and
the SSL certificate location. The SSL certificate encrypts the
communication between the robot and the servers. The robot
communicates with the servers using gRPC, an open source
Remote Procedure Call library built on HTTP/2. Once it is
created, the RobotClient object is used to make predictions
with a simple function call.

from client import RobotClient
rc = RobotClient(

TARGET_IP ,

MODEL_NAME ,

MODEL_VERSION ,

PRIVATE_SSH_KEY_PATH ,

SSL_CERTIFICATE_LOCATION
)

outputs = rc.predict(inputs)

V. INFERENCE OPTIMIZATION WITH ADAPTIVE
LOAD-BALANCING

The inference requests from a robot or a fleet of robots
can be optimized for large-scale serving of deep models. A-
priori estimation of querying rate of the model and the round-
trip inference time of the model provide a useful criteria for
inference optimization. Ensemble modeling is also useful to
deploy multiple models of the same task and optimize the
inference times. Appropriate model selection among ensem-
bles provides a trade-off between accuracy and latency to
satisfy the service level objectives [13], [15]. Optimizing the
placement and use of resources can also increase the overall
system efficiency. For example, simple application profiling
may be used for resource placement in a constrained network
where there are many CPUs and few GPUs. Finding an
appropriate balance for performance and cost, however, is
challenging when the application demands and the availability

of resources keeps changing over time, making continuous re-
evaluation necessary [24].

Load balancing across multiple servers is useful for op-
timizing resource utilization, reducing latency and ensuring
fault-tolerant configurations [25]. Traditional load balancing
strategies supported in RILaaS include,

Round Robin: Requests are distributed in a cyclic order
regardless of the load placed on each server.

Least Connections: The next request is assigned to the
server with the least number of active connections.

Least Model Time: Requests are assigned based on running
estimate of average round-trip latency for each model. To
prevent choosing a single server for extended periods of time,
we randomize the server selection with a small probability to
explore all available resources.

We use nginx [26] for load-balancing with round robin or
least connections. The nginx load balancing strategies naively
assume homogeneity of servers, i.e., each request takes a
similar amount of time to process on available resources.
Moreover, the heuristics used in these strategies are not
suitable for handling dynamic loads where the number of
requests vary over time. In this work, we seek to optimize the
inference times under dynamic loads by distributing queries
over a set of non-homogeneous servers between the Edge and
the Cloud (see Fig. 3 for an overview).

We formulate the adaptive load-balancing as a reinforce-
ment learning problem to minimize the expected round-trip
latency for each request in a given time horizon on a per-
model basis. We assign an ‘agent’ to each model to distribute
the incoming queries, i.e., the number of agents scale linearly
with the number of models used. Each agent keeps an estimate
of each server in a Markov decision process tuple 〈S,A,R〉
where st ∈ S is the state representation of the server at time
t, at ∈ A is the action of sending request to one of the N
servers which results in transition to a new state s′t ∈ S ′ along
with the reward r(st,at) ∈ R as an estimate of the round-trip
latency, i.e.,

st =


pt,1 , qt,1
pt,2 , qt,2

...
pt,N , qt,N

 , at =


1
2
...
N

 , rt = − (1 + L(st,at))
2
,

(1)
where pt,i is the number of requests of a model on server i
at time t, qt,i represents the total number of active requests
of all models on server i at time t, and L(st,at) ∈ R is the
round-trip latency of inference query cycle, i.e., time required
to send the request and receive the response from the service.
Note that the reward function penalizes the increase of latency
times in a quadratic manner. The agent learns to choose the
server by taking action at such that the expected latency in a
given time horizon is minimized from inference request load
profiles of networked robots. The expected latency is estimated
by the Q-function Q(st,at) ∈ R,

Q(st,at) = E

[
T∑

t=0

γtr(st,at)

]
, at = argmax

at=1...N
Q(st,at),

(2)
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Fig. 4: Comparison of the average round-trip latency times in seconds of the object recognition model on (left) and the grasp planning model on (right) with
the use of Edge or Cloud resources (same latency scale is used for both resources). We make two observations: 1) the round-trip communication time scales
sub-linearly with increasing batch size and number of robots across both models, 2) the difference between the Edge and the Cloud latency times is more
dominant when the computation time is less than the communication time as for the object recognition model in comparison to the grasp planning model.
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RGBD
Image
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Fig. 5: Vision-based decluttering application where the robots send the
RGBD image of the environment to the inference service and retrieves the
object categories and bounding boxes, along with their grasp locations to put
the objects in their corresponding bins.

where γ ∈ R is the discount factor of future rewards.
The Q-function is recursively updated using the Bellman
equation [27]. With a small probability, a server is randomly
chosen to encourage exploration of the state and action space.
The agent continuously optimizes the action selection to drive
down the latency times for each model based on the observed
load profiles from the networked robots. Note that we assume
the location and the number of servers to be fixed and each
model is deployed on all servers without loss of generality. In
case the number of servers change as in starting additional
Cloud instances on performance drop, the adaptive load-
balancing policy needs to be retrained.

VI. EXPERIMENTS AND RESULTS

We now present experiments for evaluating the RILaaS
platform to serve deep models of object recognition and grasp
planning on a large scale. We empirically investigate the effect
of varying batch size, number of robots and resource place-
ment, followed by the adaptive load-balancing experiments to
optimize simulated dynamic load profiles with a fleet of robots.
We use the Amazon EC2 (East) p2.1xlarge instance with
1 Tesla K80 GPU in Northern Virginia (us-east-1) for Cloud
compute and use Amazon S3 buckets for Cloud storage. The
Edge infrastructure comprises of a workstation with 1 NVidia
V100 GPU located at a nearby data center.

A. Application Workloads
We consider real-world application scenarios where RILaaS

is used to provide object recognition and grasp planning as a
service for vision-based robot decluttering, building upon our
previous work in [3], [28].

Object Recognition: We use the MobileNet-Single Shot
MultiBox Detector (SSD) model with focal loss and feature
pyramids as the base model for object recognition. The input
RGB image is fed to a pre-trained VGG16 network, followed
by feature resolution maps and a feature pyramid network,
before being fed to the output class prediction and box
prediction networks. The model is trained on 12 commonly
used household and machine shop object categories using a
combination of synthetic and real images of the environment.
Grasp Planning: Grasping diversely shaped and sized novel
objects has a wide range of applications in industrial and
consumer markets. Robots in homes, factories or warehouses
require robust grasp plans in order to interact with objects
in their environment. We use an adaptation of the Dex-Net
grasp planning model to plan grasps from the depth images
of the environment. The model samples antipodal grasp pairs
from a depth image and feeds them to a convolutional neural
network to predict the probability of successful grasp as
determined by the wrench resistance metric. The sampled
grasps are successively filtered with a cross-entropy method
to return the most likely grasp. Note that the pre-processing
step of sampling many different grasps requires CPU usage,
whereas predicting the grasp success requires GPU resources
for efficient grasp planning.

Vision-Based Decluttering: We sequentially pipeline the
object recognition and grasp planning models together for
vision-based surface decluttering [3]. The robot sends RGBD
images of the environment, where the RGB image is used
for object recognition and the cropped depth image from the
output bounding box of the object recognition model is used
by the grasp planning model to output the top ranked grasp for
the robot to pick and place the object into its corresponding
bin (see Fig. 5).

B. Scalability of RILaaS
We deploy the trained models on the RILaaS platform to

receive images from the robot, perform inference, and send
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Fig. 6: Inference optimization of varying test load profiles for object recognition on (left) and grasp planning on (right). For each model, top row shows the
round-trip latency of load-balancing strategies, second and third row shows the Q-learning and least connections policy output in allocating Edge or Cloud
resources, fourth row shows the requests rate profile. Q-learning scales better with increasing loads than other load-balancing strategies by optimally figuring
out how to use Edge resources more frequently to reduce the average round-trip latency times.

TABLE I: Computation time for inference t(inf) vs round trip commu-
nication time t(rtt) (in milliseconds) for inference over Edge and EC2-East
Cloud. Results are averaged across 6 trials. Communication time dominates
the computation time and increases as the distance to the server increases.

Location t(inf) t(rtt)

Object Detection
EC2-East 42.79± 0.41 483.82± 70.87

Edge 36.03± 3.18 172.77± 43.55

Grasp Planner
EC2-East 1501.61± 12.76 2051.48± 22.684

Edge 1386.95± 22.92 1515.59± 26.16

back the output results to the robot. We measure the round-
trip time t(rtt), i.e., time required for communication to/from
the server and the inference time t(inf), i.e., time required to
compute the model response for a given input. We experiment
with two hosts for the inference service: EC2 Cloud (East),
and Edge with GPU support.

Resource Placement with Cloud vs Edge: Results in Table
I show that the communication time is a major component
of the overall round-trip latency time. Deploying the infer-
ence service on the Edge significantly reduces the round-trip
inference time and the timing variability in comparison to
hosting the service on Cloud, while incurring a communication
overhead of around 100 milliseconds only. The difference in
resource placement is less pronounced for the grasp planning
model where CPU computation time in sampling grasp pairs
is a dominant factor. Moreover, the authentication time only
takes 1 millisecond on average with Redis cache in comparison
to 630 milliseconds with a relational database on AWS.

Effect of Batch Size and Number of Robots: We next
vary the batch size and number of robots making concurrent
requests to the service. Fig. 4 suggests that the average round-
trip latency grows sub-linearly with the batch size and the
number of robots querying the service. Moreover, deploying
models on Edge yields lower round-trip latency times across
both models, but the difference is more pronounced for the
object recognition model with lower inference time than the
grasp planning model.

Comparison with Tensorflow Serving: Fig. 7 suggests
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Fig. 7: A comparison between mean latency of RILaaS and tensorflow
Serving deployed on the Edge for the object detection model. RILaaS performs
on par with tensorflow serving and the gap closes further with more users.

that RILaaS gives comparable results to tensorflow-serving for
the object recognition model deployed at the Edge. Note that
the tensorflow-serving does not provide out-of-the-box pre-
processing/post-processing, authentication, authorization and
metrics viewing for models that it supports. Consequently,
the grasp planning model cannot be hosted on tensorflow-
serving as it iterates over preprocessing and inference. RILaaS
supports a tensorflow-serving backend while providing the
aforementioned features to make it feasible for deploying a
wide variety of models.

C. Inference Optimization under Dynamic Loads

We next simulate time-varying requests of different profiles
to evaluate the performance of inference optimization with
adaptive load-balancing. We query the object recognition and
the grasp planning model alternatively at specified rates to
simulate the decluttering setup, and compare the Q-learning
based adaptive load-balancing with round robin, least con-
nections and least model time strategies. The request profiles
include: 1) uniform loads of 1, 2, 4, 8 requests per second, 2)
step-wise increasing loads of 1, 2, 3, 4 requests per second, 3)
spiked loads where nominal load of 2 requests per second is
augmented with 13 requests per second for up to 2 seconds, 4)
Poisson distributed loads where requests follow the Poisson
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process with arrival rate of 1, 2, 4, 8 requests per second, 5)
sinusoidal loads with varying amplitudes and frequencies of
0.05, 0.01, 0.08 Hz. The first 4 types of load profiles are used
for both training and testing, while the sinusoidal load profiles
are only used for testing of the optimal inference serving
policy.

Fig. 6 shows the plots of the object recognition and grasp
planning model for various request profiles. It can be seen that
the Q-learning strategy outperforms the commonly used load-
balancing strategies. Least-connections performance is better
among the fixed load-balancing strategies and its performance
is similar to Q-learning for lighter workloads. The inference
serving policy reveals that the Q-learning is able to decrease
the average latency times by more frequently using the Edge
resource as compared to the Cloud. Overall, the adaptive
load-balancing strategy with Q-learning for object recognition
gives 15.76% and 70.7% decrease in round-trip latency time
compared to the next best least connections and worst perform-
ing round-robin baseline. Similarly, the grasp planning model
shows 12.32% and 65.91% decrease in the round-trip latency
time with Q-learning in comparison to least connections and
round-robin strategies.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Virtualizing robot storage, compute and programming is a
key enabler for large-scale learning and inference of deep
models for robotic applications. In this paper, we have intro-
duced RILaaS as a novel user-based inference serving platform
for deploying deep learning models on robots that satisfies
heterogeneous model support, rapid deployment, security and
privacy, and low latency requirements of the applications.
We used reinforcement learning for scalable inference serving
that adapts better with dynamic loads than commonly used
load balancing strategies. We provide deep object recognition
and grasp planning as a service and showed its application
to vision-based decluttering of objects from the floor and
depositing them in target bins. To the best of our knowledge,
RILaaS is the first of its kind user based inference serving
platform of deep models for robotic applications.

In future work, we plan to couple the digital twin/simulator
with the uploaded models for efficient sim-to-real transfer
and federated learning with a fleet of robots. Moreover, we
will optimize the placement of the models in addition to
optimizing the queries. Further, we will test various models
for segmentation, hierarchical task planning etc. in a multi-
agent distributed environment with a set of robots.
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