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Application — Skill Acquisition in Teleoperated Robots




Semi-Autonomous Manipulation

Recognition of intentions
on teleoperator side

Reproduction of movement
on robot side

Subspace Task Autonomous
Clustering Adaptability Control
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Subspace Clustering {& e R}

P(&,10) = Z?‘n N (&5, 20) 0 = {m;, s, B},

= Model over-fitting with D > T
= Need for parsimonious model with fewer parameters and better generalization

= Statistical subspace clustering imposes special structure on the covariance

matrix to model the latent space of dimension d with d < D

= Isotropic, diagonal, block-diagonal, multiple diagonal, full




Subspace Clustering

Motion segmentaﬁon and tracking |

‘%}r Nl
B\

3D human motion tracking
[Elhamifar and Vidal, 2013] [Li et al., 2009] 6




Subspace Clustering P(£.16) = ZmN(stmz, %)

= Mixture of factor analyzers

A; € RP*? = factor loadings matrix
S = A+

¥; € R”"” = diagonal noise matrix
= Probabilistic principal component analysis

>, = AA + 02T p > Human movements are
2

correlated
important  synergistic
directions

> Need for sharing the
parameters across the
mixture components




Semi-Tied Gaussian Mixture Models P(&l6) = Zm N(& p;, Z)

H < RP*Y — common latent basis vectors

liag) vy
>, = HZ!"H .
‘ ’ »(de8) ¢ RP*D = component-specific diagonal matrix

2

S; € R”*” = empirical covariance matrix

- H applies global linear transformation to de-

diag :
correlate the data, and Z,E tag) selects the appropriate

subspace

= Mixture components are aligned along the basis

vectors for noisy and/or insufficient training data

Y = aHEMH + (1-a)S; ac(0,1)

[Gales, 1999]



Semi-Tied Gaussian Mixture Models 0 = {m;, u;, B, T\
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Chicken Dance Encoding

= Regenerated movement sequence is shown in green

D=94 K =75
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Chicken Dance Encoding

e B ‘ﬁ fin ‘KY»;%;

t =0 t =0.77 =1 t =2.3 t =3.1

t'=3.8 t =4.6 t =h.4 t = t =6.9
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t =7.6 t =8.4 it =0.2 t =11

= Regenerated movement sequence is shown in green

D=94 K =75
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Chicken Dance Encoding D=94,K =75
1.0 1.00
0.5 0.51
-0.0 0.03
GMM Semi-Tied GMM

= Semi-Tied GMM components are more correlated than standard GMM components
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Chicken Dance Encoding

o« = 1.0 (Semi-Tied GMM)
o =0.6
a = 0.0 (GMM)
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= Semi-Tied model requires more components but the number of parameters remain less
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Task-Parameterized Semi-Tied GMM

= Adopt the model parameters to new environmental situations using frames

of reference

= Observe the data from P coordinate systems {A4;,b; 311 ; {fgj)}fﬂ

&) = A (¢, - b))

T N‘(ugp)’ Egp)) | r

a?’ K 1
S K me N(p?, oP)
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Task-Parameterized Semi-Tied GMM ¢ =A7'(& b))
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Task-Parameterized Semi-Tied GMM N(#;, £:) HN( u? +b;, A0 A))

- Given the new environmental situation {4 bj}jzl , the model parameters are

adapted by taking product of linearly transformed Gaussians
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Hidden Semi-Markov Model Encoding

GMM HMM HSMM
= Recognize the current state of the task and re-plan the movement sequence

= Encapsulate the spatio-temporal information in the model
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Hidden Semi-Markov Model Encoding

= Each state output is a single Gaussian representing product of Gaussians

= Self-transition probability is explicitly modeled for state duration by a Gaussian

0, — 11 K (4) E(j) P D yD B,
i, — ’M{a%,m}mzlv{uz‘ 3 i }jzlﬂuiﬂ 1

=1
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Hidden Semi-Markov Model Encoding (SN

= Generation of state sequence with datapoint &§; to be in state i at time ¢ / 4
S F, i
IS computed with forward variable

K min(d™a#*,(—1)

HSMM HSMM D D HSMM erlN (51 ‘ﬁ; f}e)
3 = E E MM s Nl . 3 I —
t:l — — t d“} gt ( |I’LZ ? 1 ) 1, Z:f:l ﬂ-kN(gl‘”'k:Ek)
J: 0

= Desired step-wise reference trajectory N (ﬂtait) follows from the forward

variable

. HSMM ~ o~ R 5
¢; = argmax ag; ", fy = f,, X=X,

1
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Linear Quadratic Tracking Control

- Desired step-wise reference trajectory N (ft;, it) IS smoothly tracked by

minimizing the cost function starting from initial state &:
T

Ct(‘fta 'U't) — Z(gt _ ﬁ’t)TQt(‘St o ﬁf) + 'U'IRtut Q, = 2;1 = 0,R; -0

t=1

s.t. ét = A&, + Bu,

= Optimal control input is obtained by solving a set of differential equations

§ = [z &'

~ T A.CE’,‘T}T

=gy

u; = K7 (f; — ) + K} (f — &) — R, Byd,
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Trajectory Reproduction

100 200
t

= Task variability is used for adjusting the compliance in following the trajectory
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Trajectory Reproduction

hHSMM

100 200

= Task variability is used for adjusting the compliance in following the trajectory
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Valve Opening Experiment with Baxter D=14,K =1

= Two frames: {A1,b:1} for initial configuration of the valve, {A2,b2} for

desired end configuration of the valve

= Eight demonstrations » =1...8 downsampled to 200 datapoints, 50-50

training testing ratio, and D = 14

_ _ s . .
Rﬁ”) 0 _p(.")- x? € R® = Cartesian position
(n’) J o0 il . c .
A _ E; . ) _ 0 g; € R* = Quaternion orientation
’ 0 R . 7 0 &} € R® = Linear velocity
B U

L j oA g7 € R* = Quaternion derivative
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Valve Opening Experiment with Baxter P “{\ <'

Task parameterized HSMM Task parameterized semi-tied HSMM

= Task parameterized semi-tied mixture components are better aligned and scaled
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Valve Opening Experiment with Baxter A

Task parameterized HSMM Task parameterized semi-tied HSMM

= Task parameterized semi-tied mixture components are better aligned and scaled
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Valve Opening Experiment with Baxter

0.0

TP-HSMM 0.0021 0.0146 1470
0.5 0.0038 0.0119 -
1.0 0.0040 0.0119 588

TP-Semi-Tied HSMM

= Semi-tied model gives better testing accuracy than standard GMM with much

less parameters

30



g e qlM
i
]
,’\\ I’\\ i
1 1 {
N/ ﬂ: | pk‘
7
{
-1.2 :\‘~ o
2 (2 2@ 9@
1.2 : -
/7™ N : . ; : :
1 —_— e : 2 :
* | =R | ' T e
T hd N . \ Wi . g
-1.2 : i I ; |\\ ’i-: £ : i H
1 100 2001 100 2001 100 2001 100 -~ 2001 100 2001 100 2001 100 200

t t t t t t t

= The model exploits variability in the demonstrations to extract invariant patterns
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Conclusion

= Semi-tied GMMs encode similar coordination patterns with a set of basis vectors

/synergistic directions

= Proposed framework combines parsimonious movement representation, task

adaptability and optimal control for learning manipulation tasks

= Task-parameterized semi-tied HSMM enables the robot to autonomously deal with

different manipulation scenarios in a task
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