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Application – Skill Acquisition in Teleoperated Robots
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Outline

▪ Semi-tied Gaussian mixture models

▪ Task-parameterized semi-tied GMMs

▪ Hidden semi-Markov model encoding▪ Hidden semi-Markov model encoding

▪ Linear quadratic tracking control

▪ Valve opening with Baxter robot
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Subspace Clustering

[Elhamifar and Vidal, 2013]

Motion segmentation and tracking

3D human motion tracking
[Li et al., 2009] 6



▪ Mixture of factor analyzers

▪ Probabilistic principal component analysis

Subspace Clustering

factor loadings matrix

diagonal noise matrix

Human movements are
spatially and temporally
correlated along
important synergistic
directions

Need for sharing the
parameters across the
mixture components
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Semi-Tied Gaussian Mixture Models
common latent basis vectors

component-specific diagonal matrix

empirical covariance matrix

▪ applies global linear transformation to de-

correlate the data, and selects the appropriate

subspace

▪ Mixture components are aligned along the basis

vectors for noisy and/or insufficient training data

[Gales, 1999]
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Semi-Tied Gaussian Mixture Models

Cofactor matrix

▪ E-Step:

▪ M-Step:
Cofactor matrix

Variational optimisation of

and
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Chicken Dance Encoding
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▪ Regenerated movement sequence is shown in green
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Chicken Dance Encoding

Semi-Tied GMMGMM

▪ Semi-Tied GMM components are more correlated than standard GMM components
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Chicken Dance Encoding

▪ Semi-Tied model requires more components but the number of parameters remain less
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Task-Parameterized Semi-Tied GMM

▪ Adopt the model parameters to new environmental situations using frames

of reference

▪ Observe the data from       coordinate systems :
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Task-Parameterized Semi-Tied GMM

Frame 1 Frame 2
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Frame 1 Frame 2



Task-Parameterized Semi-Tied GMM

▪ Given the new environmental situation                      , the model parameters are

adapted by taking product of linearly transformed Gaussians
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Hidden Semi-Markov Model Encoding

▪ Recognize the current state of the task and re-plan the movement sequence

▪ Encapsulate the spatio-temporal information in the model

GMM HMM HSMM
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Hidden Semi-Markov Model Encoding

▪ Each state output is a single Gaussian representing product of Gaussians

▪ Self-transition probability is explicitly modeled for state duration by a Gaussian
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Hidden Semi-Markov Model Encoding

▪ Generation of state sequence with datapoint to be in state     at time

is computed with forward variable

▪ Desired step-wise reference trajectory                     follows from the forward

variable
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▪ Desired step-wise reference trajectory                      is smoothly tracked by

minimizing the cost function starting from initial state

▪ Optimal control input is obtained by solving a set of differential equations

Linear Quadratic Tracking Control
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Trajectory Reproduction

24

▪ Task variability is used for adjusting the compliance in following the trajectory
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Valve Opening Experiment with Baxter

▪ Two frames:                 for initial configuration of the valve,                 for

desired end configuration of the valve

▪ Eight demonstrations downsampled to 200 datapoints, 50-50

training testing ratio, and

Cartesian position

Quaternion orientation

Linear velocity

Quaternion derivative
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Valve Opening Experiment with Baxter

▪ Task parameterized semi-tied mixture components are better aligned and scaled

Task parameterized HSMM Task parameterized semi-tied HSMM
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Valve Opening Experiment with Baxter

α Training MSE Testing MSE Parameters

0.0
TP-HSMM 0.0021 0.0146 1470

0.5 0.0038 0.01190.5 0.0038 0.0119 -

1.0
TP-Semi-Tied HSMM 0.0040 0.0119 588

▪ Semi-tied model gives better testing accuracy than standard GMM with much

less parameters
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Valve Opening Experiment with Baxter

▪ The model exploits variability in the demonstrations to extract invariant patterns
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Conclusion

▪ Semi-tied GMMs encode similar coordination patterns with a set of basis vectors

/synergistic directions

▪ Proposed framework combines parsimonious movement representation, task

adaptability and optimal control for learning manipulation tasks

▪ Task-parameterized semi-tied HSMM enables the robot to autonomously deal with

different manipulation scenarios in a task
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