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Abstract— Surface decluttering in homes and machine shops
can be performed with a mobile manipulator that recognizes
and grasps objects in the environment to place them into
corresponding bins. In contrast to fixed industrial manipulators,
mobile robots have low-precision sensors and actuators. In this
paper, we modify the Dex-Net 4.0 grasp planner to adapt to the
parameters of the mobile manipulator. Experiments on grasping
objects with varying shape complexity suggest that the resulting
policy, Dex-Net MM, significantly outperforms both Dex-Net
4.0 and a baseline that aligns the grasp axis orthogonally
to the principal axis of the object. In a surface decluttering
experiment where the objects are randomly selected from 40
common machine shop objects, the robot is able to recognize,
grasp and place them into the appropriate class bins 117 out
of 135 trials (86.67% including 15 detected grasp failures and
recovery on retry).

I. INTRODUCTION

Mobile manipulation robots such as the Toyota Human
Support Robot (HSR) [1] and the Fetch Robot [2] are emerg-
ing for human service applications such as decluttering the
floor of a machine shop. The utility of mobile manipulators
in surface decluttering depends upon the ability of the robot
to reliably recognize and grasp various novel objects.

Dex-Net 4.0 [3] is a state-of-the-art grasp planner that
plans robust grasps for a large variety of objects. The method
combines simulation of thousands of 3D object models,
analytical wrench mechanics, structured domain randomiza-
tion and synthetic point clouds to train a deep learning
optimization system. The learned policy rapidly processes
high-resolution depth images to compute robust robot pick
points on a diverse set of objects for an industrial manipulator
on a fixed base.

However, due to inherent cost and weight limits, mobile
manipulators have far lower precision in sensing and control
than a fixed-based robot system. This makes reliable grasping
challenging. The Toyota HSR [1] used in this paper has an
Xtion Pro Live RGB-D camera with a 480 × 640 image
resolution mounted on a mobile base. The camera must view
objects from angles of 14◦ or more from the vertical due to
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Fig. 1: System overview: Top left: Toyota HSR robot with 8 sample objects
and 5 bins. Bottom left: The robot perceives the scene from the Xtion Pro
Live RGB-D sensor. Bottom right: Domain Invariant Object Recognition
(DIOR) model performs object recognition. Top right: An object is chosen
and the grasp planner plans a grasp. The robot executes the grasp with
DexNet-MM and places the object into the associated bin.

the position of the camera with respect to the HSR base,
leading to depth noise of [2, 10]mm depending on the pixel
location in the depth image. Furthermore, the Toyota HSR
has a 4DOF arm, a 1DOF torso lift joint and a 3DOF mobile
base with a parallel-jaw gripper of 135mm maximum throw.

This work extends upon previous work on surface de-
cluttering by Tanwani et al. in [4], where deep domain
invariant models for object recognition and grasp planning
are deployed on mobile robots for surface decluttering. This
paper makes two contributions:

1) Dex-Net MM, a grasp planner developed for a mobile
manipulator with low precision in perception and con-
trol.

2) Data from experiments on surface decluttering of 40
common machine shop objects in 5 classes with a
Toyota HSR robot.

II. RELATED WORK

A. Mobile Grasp Planning

On fixed-based manipulators, data-driven deep neural net-
works trained on large amounts of empirical data labelled
with both physical robots [5] and simulation [6] lead to
significant performance improvements [7], [8], [9]. One
challenge with mobile manipulators is higher uncertainty in
the end-effector pose due to base movement. A standard
way to mitigate this imprecision is to place the mobile



Fig. 2: The 40 objects commonly found in machine shops that were used for experiments. Bin categories: Tools, Tubes,
Boxes, Scrap and 3D-Prints.

base in such a way that the manipulability of the arm is
maximized and the grasp can be executed with limited base
motion [10], [11]. This approach is impractical for tasks that
require significant movement such as surface decluttering [4],
bed-making [12] or biotechnological applications [13]. Thus,
robust grasp planning policies are needed.

Different versions of the PCA Grasp Planner that grasps
near the centroid of the object and orthogonal to its principal
axis are common heuristics for such tasks [4], [14] because
a grasp near the object centroid is often robust with respect
to motion imprecision. More sophisticated grasp planners
introduce probability distributions over object and robot pose
to consider noisy sensing and execution. Applying bayesian
filtering to such pose distributions can be used to continu-
ously adapt the planned trajectory with model predictive con-
trol [15]. Action-Related Places (ARPlaces) — a collection
of robot pose locations each with an assigned probability
of success for a given action — are introduced in [16].
By successively updating the ARPlaces and incorporating
them in the grasp planning policy, higher grasp reliability
on a mobile manipulator has been achieved. Reinforcement
learning is another powerful tool to incrementally adapt the
control input to the current state and account for errors due
to noise [17], [18].

B. Low-Precision Sensing

Low-cost mobile manipulators that do not rely on high-
precision sensing for reliable object grasping have potential
to assist people with limited motor abilities [12], [19],
[20]. Gupta et al. [21] built such low-cost robots and put
them into homes to collect real-world data for grasping.
The resulting training dataset consisted of noisy and mis-
labelled sensor readings because of commercial sensors and
uncontrolled lightning conditions during collection. A grasp
planner trained on this data outperformed Dex-Net 2.0 [6] in
home environments.

To account for the higher imprecision, the grasp planning
policy in [21] models sensor noise as a latent variable which

can be marginalized out to plan more robust grasps. Gaussian
Processes are another way to deal with imprecise sensor
readings [22]. Uncertainty about the object contours is
incorporated in the covariance matrix which decreases via
iterative regrasping. Other approaches align the sensor input
with known objects [23], shape primitives [24] or bounding
boxes [25] with precomputed reliable grasps instead of
planning on the noisy object shape given by the sensor
reading. This makes it difficult to plan a grasp on objects
for which the alignment fails.

Overcoming this issue, Morrison et al. [26] use a small
and efficient neural network to predict grasps at each pixel
of the image independent of both the object contour and pose.
Johns et al. [27] smooth their discretized grasp function with
Gaussian noise. The resulting grasps are robust with respect
to the uncertainty of their system due to noisy joint encoders,
camera miscalibration and kinematic deformation of links.

This work builds on previous work in [4], in which
deep models for object recognition and grasp planning are
learned from synthetic images in simulation, adapted to the
real images of the robot environment by learning domain-
invariant feature representations, and subsequently deployed
for low-latency serving with Fog Robotics. Learning deep
domain-invariant models by sim-to-real transfer reduces the
need of collecting massive training data from the robot,
while deploying the models on nearby resources enables
prediction serving at less than 100 milliseconds. This paper
focuses on the development of the grasp planning policy
for mobile manipulators with low precision perception and
control which was used in [4].

III. PROBLEM STATEMENT

We consider the problem of surface decluttering: using a
mobile robot with a parallel-jaw gripper to iteratively grasp a
single object from a planar worksurface and place the object
in a receptacle based on its semantic category (e.g., tool,
scrap). We assume that the mobile manipulator plans grasps
based on images from a noisy RGB-D sensor.



Consider a robot decluttering m objects o1, ..., om, each
of which belongs to one of k categories c1, ..., ck (e.g.,
tools, bottles, scrap). Each category corresponds to a unique
receptacle. The goal is to transport each object into the
receptacle corresponding to its category.

Given a state xt at time t consisting of the geometry and
pose of the objects, the robot receives a noisy observation
yt from its sensors. Based on this observation, the robot
uses a policy π to plan an action ut = π(yt) consisting of
a 4DOF gripper pose (x, y, z, θ) and object category cj . We
model π(yt) as the composition of a target object recognition
policy and grasp planning policy:

π(yt) = πgrasp ◦ πobj(yt) = πgrasp(πobj(yt))

The robot executes ut by moving the gripper to the desired
grasp pose (x, y, z, θ), closing the jaws, lifting the object, and
transporting it to the receptacle corresponging to category cj .
The robot receives a binary reward R(xt,ut) = 1 if the robot
places a single object into the correct receptacle at time t and
R(xt,ut) = 0 otherwise.

The objective of this paper is to find a policy π to
maximize the number of objects put in the correct receptacle:

max
∑
t

R(xt, π(yt))

We develop a policy that identifies objects using an object
detection network trained with sim-to-real transfer learning
and plans grasps using a Grasp Quality Convolutional Neural
Network trained using Dex-Net with stochastic models of
low-precision sensing and control.

IV. SYSTEM ARCHITECTURE

The Toyota HSR [1] shown in Fig. 1, is a compact mobile
manipulator designed for human service applications. This
robot is equipped with a commercially available Xtion Pro
Live RGB-D sensor in its rotary head, a small range 4DOF
manipulator arm with an angular jaw gripper — meaning
the jaws close along an arc, a 1DOF torso lift joint and an
omnidirectional mobile base. In this section, we quantify the
imprecision of this robot both in sensing and manipulation.
We then use the resulting uncertainties to modify the robot
execution policy to limit uncertainty and adapt Dex-Net 4.0
to the new setting yielding Dex-Net MM, a robust grasp
planning policy for a mobile manipulator.

A. Low-Precision Sensing

At time t, the robot acquires an observation yt consisting
of an RGB image Ict ∈ R480×640×3 and a noisy depth image
Idt ∈ R480×640. We use the standard deviation σ of the
noise in consecutive depth images from a static scene as
performance metric to quantify the sensing precision of the
robot. Then we adapt the robot configuration to perceive the
scene in a way to minimize sensor noise for more robust
grasp planning.

To quantify the noise of the Asus Xtion Pro Live depth
sensor on the HSR, we placed 24 identical objects oi
uniformly across the whole sensor image and read 30 depth

a) b)

Fig. 3: a) The HSR RGB-D camera observes the floor from an angle
14◦ from the vertical. b) With a fixed base and allowing gripper height
and rotation actuation only, a graspable cylinder for the end-effector can
be projected in the scene. Aligning this cylinder with the target object
minimizes additional base movement.

images Idt with a frequency of 0.5Hz. The standard deviation
σk,l for the pixel with coordinates (k, l) showed that noise
increases with the pixel distance to the image center from
σ240,320 ≈ 2mm in the center up to ≈ 10mm near the
image corners. This confirms a more detailed sensor noise
study from Rauscher et al. [28] that additionally quantified
a growth of σ by 4mm per meter increased object to camera
distance. The robot needs to perceive the scene close to the
objects and ideally center the image around the target object
for accurate sensing. The only way to achieve this in our
scenario is a steep camera view that limits the field of view.
A camera elevation angle of 14◦ — where 0◦ means an
overhead camera — is the steepest angle that the HSR can
perceive its complete workspace as illustrated in Fig. 3. This
results in an average object depth value of 0.95m in the
depth image. In addition, the graspable zone as explained in
Sect. IV-B is put into the vertical center of the image yielding
an optimal configuration for grasp planning near this area.

B. Low-Precision Movement

We quantify the uncertainty τIK of the HSR inverse
kinematics (IK) controller [29] by giving a target 4DOF
planar gripper pose on the grid in our workspace as in-
put. After the robot executes the motion, we measure the
deviation in gripper pose. The error in X and Y direction
with the resulting Euclidean error for this controller is shown
in the first row of Table I. These values are too high to
achieve reliable parallel-jaw grasping. We tune this controller
to reduce base movement and focus on manipulator arm
movement by increasing the weight of base movement in
the cost function that is used to plan end-effector trajectories.
We similarly increase the weight of base rotation against base
translation. This decreases the Euclidean error to ±7.3mm
as can be seen in the second row of Table I. This is still too
high for reliable parallel-jaw grasping. With a fixed base and
moving only the wrist roll joint and translational arm height
joint, the graspable area of the gripper can be formulated
as a cylinder V ∈ {r, h} with r the radius defined by the
maximum gripper width and h the height as shown in Fig. 3.
We calibrate a predefined manipulator movement allowing
the robot to execute grasps perpendicular to the ground at
any height and gripper rotation in the cylinder with minimal
base movement. Base movement is used to align this cylinder



Controller Error in X Error in Y Euclidean Error
τIK 6.9mm 7.9mm 10.5mm
τIK,tuned 5.9mm 4.3mm 7.3mm
τcyl 2.6mm 3.0mm 4.0mm

TABLE I: End-effector motion imprecision for different control methods.

with the desired object. With the object in the graspable
zone of the gripper, it is also in the center of the depth
image. From this configuration, a grasp is planned and the
robot executes it with minimal additional base movement.
The error for the developed control algorithm is shown in
the last row of Table I.

C. Target Object Recognition Policy

We leverage on the pretrained features of the Domain
Invariant Object Recognition (DIOR) model [4] that are
learned across 20K simulation images of cluttered piles
sampled from 770 unique 3D object meshes and 212 real
images of cluttered piles sampled from 102 physical objects,
see [4] for further details. We use the DIOR dann model
that shares parameters of the feature representation for both
the sim and the real domain and outputs the bounding box
with corresponding class label cj for each object recognized
in the image. We use the MobileNet Single-Shot MultiBox
Detector (SSD) [30], [31] algorithm with focal loss and
feature pyramids for adapting the model to the new object
categories. Training adapts the model parameters such that
the classification loss Lyc

of predicting the correct object
class cj and the localization loss Lyl

of predicting the
bounding box locations is minimized over all images.

We split 40 objects across 5 class categories {cj}5j=1

including Tools, Tubes (glue, caulk,..), Boxes (for batteries,
staplers, nails,..), 3D-Prints (representing assembly parts) and
Scrap (cloth, sponge,..), see Fig. 2. We collect a dataset of
280 real RGB images {Ict,real}280t=1 and hand-label bounding
boxes and object categories for each image. With this dataset,
we adapt the pre-trained DIOR dann model to our objects.

Our target object recognition policy πobj(yt) feeds the
RGB image Ict as input to the adapted DIOR dann model
and chooses the nearest recognized object as target. It uses
the bounding box of the target object to crop the depth image
Idt,crop = πobj(Idt ) as input for the grasp planning policy.

D. Grasp Planning Policy

Given the cropped depth image, our grasp planning policy
outputs a 4DOF gripper pose πgrasp(Idt,crop) = (x, y, z, θ)
consisting of the grasp center point and planar orientation of
the gripper. We now present Dex-Net MM – an adaptation
of Dex-Net 4.0 [3] grasp planning model to a mobile base
with both low-precision sensing and manipulation.

1) Transfer Learning: We train the grasping model in the
simulation environment. A virtual camera points towards a
planar worksurface, objects are dropped randomly into heaps
using dynamic simulation, and a synthetic depth image is
rendered. Grasps are evaluated using a robust wrench resis-
tance metric in simulation. Instead of evaluating the exact
intended grasp (x, y, z, θ), we perturb the grasp position

Fig. 4: Given an initial state (left), Dex-Net 4.0 adds a depth offset to the
grasp to lower the gripper. This results in collision with the object because
of the tilted depth vector as shown in the middle figure. Right: Dex-Net
MM uses an additional height offset in the grasp parametrization to lower
the grasp in the 3D space (right).

using our knowledge about the gripper imprecision. For each
grasp, an error in x and y is sampled from a Gaussian
distribution and the translated grasp (x+ ex, y + ey, z, θ) is
evaluated. The standard deviation τDNMM has been chosen
to adapt to the measured values from Table I. We chose
a value of τDNMM = 2.5mm. The tested grasps are then
projected onto the rendered depth image which results in
a large set of labelled grasps. These labels are used as
training data for the grasp planning model. In our setting, the
HSR perceives its environment significantly different from
the dataset generated with a vertical high-resolution camera
which has been used to train Dex-Net 4.0. In addition, the
distance to objects varies depending on the robot’s pose in
the workspace. To adapt the Dex-Net 4.0 grasp planning
policy to this setting, we generated a new dataset with 1000
simulated scenes. For each scene, 3-10 out of 5000 unique
3D objects are dropped from a 15cm height into a wide
bin and 10 different camera poses are sampled from which
a synthetic depth image was rendered using the intrinsics
of a Xtion Pro Live camera. Each camera pose is uniformly
sampled from the set of configurations that point towards the
object heap with a camera elevation angle in [10, 15]◦ and
camera to heap distance in [0.75, 1.25]m. We then sampled
and evaluated 260 grasps for this scene using an algorithmic
supervisor. Each grasp is projected onto the 10 rendered
depth images yielding 10 labelled datapoints per grasp and
scene. This results in 2.6million (1000×10×260) datapoints
for our dataset. We finetuned the existing Dex-Net 4.0 model
for 50 epochs on this dataset using a batch size of 64 images.

2) Tilt Offset Correction: The grasp sampler of Dex-Net
models first samples antipodal pairs from edge points on
the object surface. Using the center of these antipodal pairs
for the grasp parametrization results in a gripper pose above
the object, as shown in Fig. 4. From this reference pose,
it lowers the gripper to a target pose from which the object
can be grasped. In a vertical camera setting, depth and height
can be used interchangeably. This assumption is exploited by
Dex-Net 4.0 in the grasp sampling process where it adds a
depth offset uniformly sampled from [5, 40]mm to lower the
reference grasp. Changing the depth value in a tilted camera
setting lowers the grasp in the z direction and moves the
gripper away from the robot. This leads to gripper collisions



Fig. 5: Planned grasps for different methods. Top row: Due to gripper
imprecision, the grasps planned by Dex-Net 4.0 are prone to fail. Bottom
row: Dex-Net MM plans more conservative grasps in all cases except the
last one in which it preferred a near grasp limiting base movement over a
conservative grasp near the object center.

with the object as demonstrated in Fig. 4. Additionally, the
planner becomes biased towards grasping too high because
the distance the gripper is lowered is shrunk with respect to
the depth offset.

We develop a grasp sampler to account for these limita-
tions. Instead of reasoning in the camera reference frame, this
grasp sampler acts in the 3D world frame and adds a height
offset value uniformly sampled from [15, 25]mm to the grasp
parametrization to lower the grasp from the reference pose
as illustrated in Fig. 4. In addition, the gradient threshold
for detecting edge pixels on the objects used for antipodal
pair sampling is decreased from 5mm to 3mm because in a
tilted camera setting, the front edge cannot be clearly seen
as obvious depth jumps are missing. The lower threshold
results in the detection of edge pixels in the depth image
at noisy areas and therefore grasps are also sampled on the
floor. This is not a problem because Dex-Net MM prunes
out these grasps due to their low quality values.

V. EXPERIMENTS AND RESULTS

We conducted physical experiments using the Toyota HSR.
We use Dex-Net 4.0 [3] and the PCA Grasp Planner [4]
as baselines to compare grasping reliability for 125 grasp
attempts on 25 objects with varying surface complexity in
the first experiment. In the second experiment, we test the
surface decluttering performance of the complete pipeline
with 12 trials on putting 40 common machine shop objects
into bins.

A. Grasping

We created a dataset of 25 objects with various surface
complexity (10 of Level 1, 8 of Level 2, 7 of Level 3) [3].
Level 1 objects have basic geometric shapes, such as boxes,
bottles and spheres while Level 2 objects have more complex
contours such as the adversarial objects used in [6]. Objects

that are empirically very hard to grasp are chosen as Level
3 objects.

To measure grasp performance, we placed a single object
in front of the robot similar to Fig. 3. With the RGB-D
sensor directed towards the object, we planned a grasp for
the robot to pick the object and used the developed controller
from Sect. IV-B to execute it. If the robot was able to grasp
the object, lift it 30cm, and hold it for 5 seconds, the trial
was counted as success. Fig. 6 shows the success rates for
each method separated by object complexity level. The PCA
Grasp Planner achieved 87.5% reliability on the Level 1
objects. Its performance drops down to 77.5% and 48.6%
for Level 2 and Level 3 objects respectively. The centroid
of the object may not be a good choice for irregular shapes.
Dex-Net 4.0 was able to plan reliable grasps in the image
space but often grasped too high or collided with the object
which resulted in a 54% success rate on Level 1 objects.
Its performance increased to 85% for Level 2 objects. The
size of Level 2 objects may be the cause for this, as bigger
objects seem to be less sensitive to height errors. On Level
3 objects, the success rate of Dex-Net 4.0 drops to 68.6%.
Dex-Net MM outperforms both baselines in this setting with
no failed grasps for Level 1 and 2 objects and the policy
succeeded on 85.7% of grasps for Level 3 objects.

B. Surface Decluttering

In this experiment we evaluate the performance of the
surface decluttering pipeline. The HSR is situated in a small
rectangular workspace of 120cm×120cm. Objects are placed
in front of the robot and the corresponding bins are behind
the robot. An overview of the setup can be seen on the left
of Fig. 7. Addressing this task in a machine workshop, we
created a dataset of 40 common machine shop objects shown
in Fig. 2. The following 5 classes are represented by 8 objects
each: Tool, Tube, Box, 3D-Print and Scrap. We ran 12 trials.
For each trial we chose 10 objects at random (2 per class)
and placed them in the workspace of the robot. For this
experiment, each object was singulated. Two input images
from example scenes can be seen on the right of Fig. 7.
Given the RGB-D input from the camera, the robot’s task was
to classify the objects in the scene and choose an object. It
then executed a grasp planned by Dex-Net MM on the target
object and put it into the corresponding bin. Using the binary
reward R(xt,ut) from Sect. III, the system achieved a score
of 117/120 objects placed in the correct receptacle after
135 grasp attempts. We evaluated the performance of the
grasping and object classification for each class separately.
For grasping success, we counted the number of successful
grasps and divided this by the number of times the robot
attempted to grasp an object from this particular class over
the 12 trials. For classification, we checked the number of
true positives and false positives in the corresponding bin at
the end of each trial and summed them up, with a maximum
of 24 true positives and 0 false positives per class. Table II
shows the results. With an overall grasping success rate of
88.9% (120 successful grasps out of 135 attempts), the Dex-
Net MM policy was able to successfully declutter all objects



Fig. 6: Results from 5 grasp attempts on 10 Level 1, 8 Level 2, and 7 Level 3 objects for each policy on objects with different shape complexity.
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Fig. 7: Left: Top view from setup for surface decluttering experiment.
Right: Two sample input images taken from the experiment.

Fig. 8: Three example failure modes from Dex-Net MM. Left: The object
was lifted successfully, but the screwdriver’s weight caused it to rotate and
then it slipped out of the gripper during transportation. Center: The robot
grasped slightly more below than planned and the object slipped because
of the round surface. Right: Due to motion imprecision, the HSR grasped
further below than planned and failed to grasp the object. Such counter
examples may be due to limited positive grasps.

using 15 retries. For boxes, all grasps succeeded. 3D-Prints
were the hardest objects for the HSR to grasp with 77.4%
success rate. Three example failure modes of the developed
system are shown in Fig. 8. With 7 of the 15 failed grasps,
error in z (height) was the main failure mode. The other
failures were due to poor grasp planning (4), imprecise
motion (3) and ungraspable objects (1). The last 3 failed
grasps achieved lifting the object, but the grasp was unstable
and the object dropped during its way to the bin. With
isolated objects, the object classification model misclassified
3 objects out of 120. A screwdriver was misclassified twice
as a tube and the yellow measurement tape was classified as
a 3D-print. Fig. 9 depicts the general pattern in highlighting
the differences in the Dex-Net MM. Increasing the motion

Fig. 9: Grasp axes colored by predicted robustness (green is high, red
is low):(left) Effect of increasing motion imprecision on grasp labels in
the training dataset on reducing grasp quality, (right) Effect of increasing
gripper throw on grasp labels in the training dataset. The colors in far right
are rescaled showing that the grasps around the base are more robust than
those at the rim.

imprecision encourages the grasps to be focused towards the
center of the object (more robust); while increasing grasp
width allows for more potential grasps to be available.

Class Grasping TP FP
Tool 96.0% ± 7.7% 21 0
Tube 92.3% ± 10.2% 24 2
Box 100.0% 24 0
3D-Print 77.4% ± 14.7% 24 1
Scrap 92.3% ± 10.2% 24 0

TABLE II: Experimental results for 120 surface decluttering trials with
24 objects for each class. Left column: Grasping success rate with standard
error of the mean. Right column: Number of true and false positives for
objects put into the bins. Less than 24 true positives means that some objects
from this class were put into another bin. More than 0 false positives means
that an object from another class was put into this bin.

C. Timing Analysis

Surface decluttering is not a time critical task. The average
time needed by our developed pipeline to grasp an object and
put it into its respective bin in the setup explained in Sect. V-
B is 76.1sec. This results in 47 objects per hour. The average
duration for each subprocess is shown in Table III.

Policy Stage Runtime
Image Segmentation 4.2s
Grasp planning 2.6s
Grasp execution 19.7s
Drop into bin 22.9s
Go back to start 26.7s
Total 76.1s

TABLE III: Average time for each subprocess in surface decluttering
experiment.

VI. CONCLUSIONS

We present Dex-Net MM, a grasp planning policy for
a mobile manipulator with low precision perception and



control, and use it with a deep domain invariant object recog-
nition model for surface decluttering. In physical experiments
with 40 objects commonly used in homes and machine shops,
the pipeline was able to successfully declutter singulated
objects with 88.9% overall grasping success rate of 117/120
objects put into the correct bin.
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